

REPORT TO

BANKSTOWN AIRPORT PTY LIMITED

ON

PRELIMINARY SITE INVESTIGATION

FOR

AVIATION HANGAR PROJECT

AT

BANKSTOWN AIRPORT, BANKSTOWN, NSW

Date: 20 June 2024 Ref: E35614P2rpt

JKEnvironments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Brendan Page

Principal Environmental Scientist

CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E35614P2rpt DRAFT	Draft Report	20 December 2023
E35614P2rpt	Final Report	20 June 2024

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Bankstown Airport Pty Limited ('the client') commissioned JK Environments (JKE) to undertake a Preliminary Site Investigation (PSI) for the proposed aviation hangar project at Bankstown Airport, Bankstown, NSW. The proposed development area is referred to as 'the site' in this report. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2 attached in the appendices.

A geotechnical investigation was undertaken in conjunction with this PSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 35614BF2rptRev1). This report should be read in conjunction with the JKG report.

Based on the provided architectural drawings, we understand that the site will be developed to accommodate new hangars, taxiways and a car park. The proposed ground floor levels vary from Relative Level (RL) 7.87m at the northern end to RL8.40m at the southern end. Based on existing site levels and assuming pavement/slab thickness of at least 0.3m, we expect very minor excavation, typically less than 0.3m deep over the northern portion of the site. However, over the southern portion of the site, we expect filling in the order of approximately 0.8m will be required.

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil; and
- Provide a discussion on potential contamination-related risks and constraints, and preliminary advice/commentary regarding potential risk mitigation measures based on the findings.

The scope of work included the following:

- Review of site information, including background and site history information from various sources outlined in the report;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The investigation included a review of historical information, soil sampling from 26 boreholes and groundwater sampling from five groundwater monitoring wells. The review of historical information indicated the following:

- The site was vacant bushland and was potentially used for agricultural (grazing purposes) until sometime between 1930 and 1943. Redevelopment of the site for use as an airport occurred prior to 1943 and it is understood that the airport was utilised as an airfield during World War 2. The site appeared primarily to be an undeveloped area of the airport that did not include any buildings, and was used to park planes and as taxiways;
- Previous investigations identified historically imported fill which was found to depths of approximately 1m below ground level (BGL) or less. Limited soil investigation undertaken previous by JKE did not identify contamination that was considered to pose a risk in the airport land use setting;
- Per- and polyfluoroalkyl substances (PFAS) source zones associated with fire incidents and use/storage of aqueous film forming foam (AFFF) were identified by others in the surrounds. Elevated PFAS concentrations have historically been reported in groundwater at the site and in the wider airport surrounds; and
- A fuel storage/refuelling facility is located in relatively close proximity to the north of the site.

Based on the scope of work undertaken for this investigation, JKE identified the following potential contamination sources/AEC:

- Fill;
- Aviation/airport use;
- Historical agricultural use;
- Hazardous building materials; and
- Off-site areas within the wider airport.

The boreholes encountered fill generally to depths ranging from 0.5m to 1m. The fill contained little to no building/demolition rubble inclusions and there were no odours or staining observed. The fill was underlain by natural silty clay soil. Groundwater was identified at depths ranging from appropriately 2mBGL to 5.5mBGL and was inferred to be flowing towards the west and south-west.

All soil contaminant concentrations were below the human health and ecological-based SAC. The pH was outside the acceptable range in groundwater, and heavy metals were also detected in groundwater at concentrations that exceeded the ecological SAC. The nickel concentration in one groundwater sample exceeded the human health (recreational) SAC.

The PSI did not identify any unacceptable contamination risks associated with complete source-pathway-receptor (SPR) linkages. The soil contamination and subsurface conditions were fairly consistent across the site. However, the soil sampling density was relatively low based on the site area, and sampling occurred from boreholes which limits field observations of the occurrence of asbestos materials (i.e. fibre cement fragments) in soil. Therefore, there is considered to be a potential risk from contamination that could be discovered as an unexpected find.

Considering the findings of the PSI, we recommend that a robust unexpected finds procedure be developed and implemented for the project to mitigate potential risks associated with contamination. If the client wishes to further mitigate potential risks and uncertainty associated with soil waste classifications and the potential occurrence of contamination and/or unexpected finds, then a higher density of soil sampling should occur prior to commencement of tendering for the construction work, and the waste classifications should be finalised.

Reference is to be made to Section 9 for the preliminary waste classifications for soil.

An assessment in relation to unexploded ordnance was outside the scope of the PSI. Potential risks in this regard will require specialist input from another consultant.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	IIVIK	DDUCTION	-
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	SCOPE OF WORK	2
2	SITE I	NFORMATION	3
	2.1	BACKGROUND	\$
	2.2	SITE IDENTIFICATION	5
	2.3	SITE LOCATION, REGIONAL SETTING AND TOPOGRAPHY	5
	2.4	SITE INSPECTION	•
	2.5	Surrounding Land Use	7
	2.6	Underground Services	7
3	GEOL	OGY AND HYDROGEOLOGY	8
	3.1	REGIONAL GEOLOGY	8
	3.2	ACID SULFATE SOIL (ASS) RISK AND PLANNING	8
	3.3	Hydrogeology	8
	3.4	RECEIVING WATER BODIES	g
4	SITE I	HISTORY INFORMATION	10
	4.1	REVIEW OF HISTORICAL AERIAL PHOTOGRAPHS	10
	4.2	NSW EPA and Department of Defence Records	11
	4.3	HISTORICAL BUSINESS DIRECTORY AND ADDITIONAL LOTSEARCH INFORMATION	12
	4.4	SUMMARY OF SITE HISTORY INFORMATION	13
	4.5	Integrity of Site History Information	13
5	CONC	CEPTUAL SITE MODEL	14
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	14
	5.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	15
6	SAMI	PLING, ANALYSIS AND QUALITY PLAN	17
	6.1	DATA QUALITY OBJECTIVES (DQO)	17
	6.2	SOIL SAMPLING PLAN AND METHODOLOGY	19
	6.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	20
7	SITE	ASSESSMENT CRITERIA (SAC)	23
	7.1	Soil	23
	7.2	GROUNDWATER	24
8	RESU	LTS	26
	8.1	SUMMARY OF DATA (QA/QC) EVALUATION	26
	8.2	SUBSURFACE CONDITIONS	26
	8.3	FIELD SCREENING	27
	8.4	SOIL LABORATORY RESULTS	27
	8.5	GROUNDWATER LABORATORY RESULTS	28
9	PRELI	MINARY WASTE CLASSIFICATION ASSESSMENT	29

	9.1	WASTE CLASSIFICATION OF FILL	29
	9.2	CLASSIFICATION OF NATURAL SOIL	29
10	DISCL	JSSION	30
	10.1	CONTAMINATION SOURCES/AEC AND POTENTIAL FOR SITE CONTAMINATION	30
	10.2	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	30
	10.3	DECISION STATEMENTS	31
	10.4	CONTAMINATION RISKS, CONSTRAINTS AND RISK MITIGATION	32
11	CONC	CLUSIONS AND RECOMMENDATIONS	33
12	LIMIT	ATIONS	35

List of Tables

Table 2-1: Site Identification	5
Table 4-1: Summary of Historical Aerial Photographs	10
Table 4-2: NSW EPA and Department of Defence Records	11
Table 4-3: Historical Business Directory and other Records	12
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	14
Table 5-2: CSM	15
Table 6-1: Soil Sampling Plan and Methodology	19
Table 6-2: Groundwater Sampling Plan and Methodology	20
Table 6-3: Laboratory Details	22
Table 7-1: Waste Categories	24
Table 8-1: Summary of Subsurface Conditions	26
Table 8-2: Summary of Field Screening	27

Attachments

Appendix B: Site Information and Site History
Appendix C: Laboratory Results Summary Tables

Appendix D: Borehole Logs

Appendix E: Laboratory Reports & COC Documents

Appendix F: Report Explanatory Notes Appendix G: Data (QA/QC) Evaluation Appendix H: Field Work Documents

Appendix I: Guidelines and Reference Documents

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Aqueous Film Forming Foam	AFFF
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Above-Ground Storage Tank	AST
Before You Dig Australia	BYDA
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	ВОМ
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	СоРС
Chain of Custody	coc
Conceptual Site Model	CSM
Development Application	DA
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environment Protection Authority	EPA
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Health Investigation Level	HIL
Health Screening Level	HSL
International Organisation of Standardisation	ISO
JK Environments	JKE
JK Geotechnics	JKG
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН
Potential ASS	PASS
Polychlorinated Biphenyls	РСВ
Per-and Polyfluoroalkyl Substances	PFAS
Perfluorooctanoic Acid	PFOA
Perfluorooctanesulfonic Acid	PFOS
Perfluorohexane Sulfonate	PFHxS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL

Quality Assurance	QA
Quality Control	QC
Relative Level	RL
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Reduced/Relative Level	RL
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
State Environmental Planning Policy	SEPP
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Frip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Гrip Spike	TS
Jpper Confidence Limit	UCL
Jnited States Environmental Protection Agency	USEPA
Jnderground Storage Tank	UST
/irgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
Water Investigation Level	WIL
Nork Health and Safety	WHS

Units

Litres Metres BGL mBGL Metres m Millivolts mV Millilitres ml or mL Millie quivalentsmeq micro Siemens per Centimetre μS/cm Micrograms per Litre μg/L Milligrams per Kilogram mg/kg Milligrams per Litre mg/L Parts Per Million ppm Percentage % %w/w Percentage weight for weight

1 INTRODUCTION

Bankstown Airport Pty Limited ('the client') commissioned JK Environments (JKE) to undertake a Preliminary Site Investigation (PSI) for the proposed aviation hangar project at Bankstown Airport, Bankstown, NSW. The proposed development area is referred to as 'the site' in this report. The site location is shown on Figure 1 and the investigation was confined to the site boundaries as shown on Figure 2 attached in the appendices.

A geotechnical investigation was undertaken in conjunction with this PSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 35614BF2rptRev1). This report should be read in conjunction with the JKG report.

1.1 Proposed Development Details

Based on the provided architectural drawings prepared by Crawford Architects (Project No. 22060, Dwg. A010RevC, A018RevE and A100RevC, dated 29 November 2023), we understand that the site will be developed to accommodate new hangars, taxiways and a car park. The proposed ground floor levels vary from Relative Level (RL) 7.87m at the northern end to RL8.40m at the southern end. Based on existing site levels and assuming pavement/slab thickness of at least 0.3m, we expect very minor excavation, typically less than 0.3m deep over the northern portion of the site. However, over the southern portion of the site, we expect filling in the order of approximately 0.8m will be required.

A copy of the supplied plans is provided in the appendices.

1.2 Aims and Objectives

The primary aims of the investigation were to identify any past or present potentially contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of the soil and groundwater contamination conditions. The objectives were to:

- Provide an appraisal of the past site use(s) based on a review of historical records;
- Assess the current site conditions and use(s) via a site walkover inspection;
- Identify potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC);
- Assess the soil and groundwater contamination conditions via implementation of a preliminary sampling and analysis program;
- Prepare a conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil; and
- Provide a discussion on potential contamination-related risks and constraints, and preliminary advice/commentary regarding potential risk mitigation measures based on the findings.

1.3 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: EP59184Prev1) of 8 September 2023 and written acceptance from the client via a Services Order (Ref: SO 2022-28-02) dated 25 October 2023. The scope of work included the following:

- Review of site information, including background and site history information from various sources outlined in the report;
- Preparation of a CSM;
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)¹, the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014)² and the NSW EPA Addendum to the Waste Classification Guidelines (2014) – Part 1: classifying waste. A list of reference documents/guidelines is included in the appendices.

² NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

¹ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013)*. (referred to as NEPM 2013)

2 SITE INFORMATION

2.1 Background

2.1.1 JKE Contamination Screening

JKE previously undertook a Preliminary Waste Classification and Soil Contamination Screening associated with pavement upgrades within the wider Bankstown Airport in 2023³. Two of the screening borehole locations were within the site area applicable to this PSI (locations LD24 and LD26). The JKE screening identified relatively low contaminant concentrations in the soil samples that were analysed, and low contamination-related risks. The soils were preliminarily classified as 'general solid waste (non-putrescible)' for waste disposal purposes.

LD24 and LD26 encountered asphaltic concrete pavement overlying fill (i.e. historically imported/placed soils) to depths of 0.8-1m. Natural silty clay was beneath the fill. There was no groundwater observed in these boreholes to a depth of 1.5m.

2.1.2 Groundwater Monitoring by Others

A series of groundwater reports dating back to 2002 were provided. JKE undertook a high-level review of the more recent reports, including the following documents prepared by Jacobs:

- Groundwater Well Installation report 2017⁴;
- Bankstown Airport Annual 2020 Groundwater Monitoring Report⁵; and
- BAL-GW11 PFAS Monitoring letter 2021⁶.

Long-term groundwater monitoring has occurred within Bankstown Airport since the early 2000s. The well installation report indicated that two groundwater monitoring wells are located within the site area applicable to this PSI. These include:

- BAL_GW11 located in the south-eastern end of the site (rational provided for this location: fuel storage system); and
- A3_GW02 located in the north-western area of the site (rational provided for this location: up-gradient groundwater quality).

Both wells were installed to a depth of 8m below ground level (BGL) and were screened with relatively long response zones from 2-8m.

The groundwater monitoring report 2020 includes a plan showing the well locations, as well as another plan showing potential per- and polyfluoroalkyl (PFAS) sources within the airport. These plans have been extracted and are attached in the appendices to this PSI for reference purposes.

⁶ Jacobs, (2021b). Letter Subject: BAL-GW11 PFAS Monitoring. (Ref: IA141108, dated 11 June 2021) (referred to as BAL-GW11 PFAS monitoring letter)

³ JKE, (2023a). Report to Bankstown Airport Pty Limited on Preliminary Waste Classification and Soil Contamination Screening for Proposed Pavement Upgrade at Bankstown Airport, Bankstown, NSW. (Ref: 35614Prpt, dated 27 January 2023) (referred to as JKE screening)

⁴ Jacobs, (2017). Groundwater Well Installation, Bankstown Airport Limited, Groundwater Well Installation Report (Ref: IA141100 1|C, dated 4 July 2017) (referred to as groundwater well installation report)

⁵ Jacobs, (2021a). Bankstown Airport, Bankstown Airport Annual 2020 Groundwater Monitoring Report, Bankstown Airport Limited. (Ref: IA141108 Drafted, dated 1 March 2021) (referred to as groundwater monitoring report 2020)

There are several potential PFAS sources mapped in the vicinity of the site. Notably these include source areas 4 and 10 which are immediately to the east/north-east of the site, and source area 3 further to the north-east, all of which are up-gradient based on the groundwater flow direction being towards the west/south-west. These sources are identified as follows:

- Source area 3 use of aqueous film forming foam (AFFF) for fire training in the north east of the Airport near Schofields Flying Club;
- Source area 4 use and storage of AFFF in the former fire station area; and
- Source area 10 helicopter fire near TOLL facility in 2011.

Samples from the Jacobs groundwater wells BAL_GW11 and A3_GW02 did not identify detectable concentrations of volatile contaminants/petroleum hydrocarbons during recent monitoring in 2020. PFAS concentrations have consistently exceeded the water investigation levels (WILs) in BAL_GW11. A summary of the adopted PFAS WILs and the PFAS results from BAL_GW11 area presented in the following Tables 1 and 3, extracted from the BAL-GW11 PFAS monitoring letter:

Table 1: Adopted groundwater PFAS WILs

Exposure scenario	PFOS	PFOA	PFOS + PFHxS
Recreational Water Use		10 μg/L	2 μg/L
Ecological (marine – 95% species protection)	0.13 μg/L	220 μg/L	-

Table 3: PFAS results: BAL-GW11 (all results expressed as µg/L)

PFAS Compound	WIL	Sample Date			
	(µg/L)	July 2018	July 2019	December 2020	June 2021
PFOS	0.13	<0.05	0.71	5.32	8.4
PFOS+PFHxS	2	0.46	8.36	85.9	86
PFOA	10	<0.05	0.07	1.26	1.6

The BAL-GW11 PFAS monitoring letter stated the following with regards to these PFAS results in monitoring well BAL-GW11:

"The concentrations of PFAS compounds recorded in June 2021 are generally similar to those reported in December 2020 so are unlikely to be associated with an anomalous result. Based on the results, the localised groundwater flow direction (to the south west) and drought conditions experienced at the site between 2017 and 2019, the elevated PFAS concentrations reported in BAL-GW11 in 2020 and 2021 may be associated with

the mobilisation of PFAS from a source located up gradient of this well location during more recent rainfall events.

The potential PFAS source map..... indicated that areas 3 and 10 are likely to be located up gradient of well location BALGW1 [sic].".

We have assumed the reference to "BALGW1" in the last sentence quoted above is a typographical error and it is indented to refer to BAL-GW11.

JKE note that the PFAS source map is attached in the appendices to this PSI for reference purposes.

Chlorinated solvents and petroleum hydrocarbons have been identified in groundwater in other parts of the Bankstown Airport, together with typical background concentrations of heavy metals.

2.2 Site Identification

Table 2-1: Site Identification

Current Site Owner	Bankstown Airport Limited
(certificate of title):	
Site Address:	1B Kestrel Place, Bankstown Aerodrome, NSW 2200
Lot & Deposited Plan:	Part of Lot 2 DP1268218 and part of Lot 65 in DP1273439
Current Land Use:	Airport including taxiways, vacant grassed areas
Proposed Land Use:	Airport, including hangars, taxiways and car park
Local Government Area:	Canterbury Bankstown
Current Zoning:	SP2 - Infrastructure
Site Area (m²) (approx.):	87,600
RL (AHD in m) (approx.):	6.5-9
Geographical Location	Latitude: -33.918973
(decimal degrees) (approx.):	Longitude: 150.988314
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2

2.3 Site Location, Regional Setting and Topography

The site is located in the central-northern portion of Bankstown Airport, to the north of the main runways and to the south/west of the main cluster of buildings.

Bankstown Airport is located within a relatively level floodplain on the eastern bank of the Georges River and hence grades down to the south-west towards Georges River. Several canals and creeks extend from the Georges River and mostly onto the outer rim of the airport, with the exception of a canal located beyond the eastern edge of the runways which extends in an approximate north-south alignment before turning under Nancy Leebold Drive.

The site itself is relatively flat, with only a gentle fall towards the south-west.

2.4 Site Inspection

A walkover inspection of the site was undertaken by JKE on 24 November 2023. The inspection was limited to accessible areas of the site and immediate surrounds. A summary of the inspection findings is outlined in the following subsections:

2.4.1 Current Site Use and/or Indicators of Former Site Use

At the time of the inspection, the site formed part of Bankstown Airport and was grassed or surfaced with pavements associated with taxiways. The grassed areas were used to park/store small planes.

2.4.2 Buildings, Structures and Roads

Areas that were not grassed were paved with asphaltic concrete. The pavements were in relatively good condition and there was no extensive cracking or potholing observed.

There were no buildings on site. There were two circular-shaped paved areas in the west of the site. One of these included a pole with a wind sock. Airport staff could not confirm the purpose of these concrete pads when we enquired about them.

2.4.3 Boundary Conditions, Soil Stability and Erosion

The site was unfenced. There was no notable soil scouring or erosion impacts observed.

2.4.4 Presence of Drums/Chemical Storage and Waste

There were no drums, chemical or waste storage on site.

2.4.5 Evidence of Cut and Fill

Localised areas of exposed soil were observed and the surficial soils were suspected of being 'fill' (i.e. historically imported/placed soils).

2.4.6 Visible or Olfactory Indicators of Contamination (odours, spills etc)

There were no visible or olfactory indicators of contamination on site, other than suspected 'fill' which may be contaminated.

2.4.7 Drainage and Services

Stormwater drainage was understood to exist and generally extended parallel and beneath parts of the site boundary. There were stormwater pits associated with this infrastructure. Surface water during rain events was expected to infiltrate the grassed areas, or run off the pavements and as overland flow, intercepted by the stormwater drainage infrastructure.

2.4.8 Sensitive Environments

Sensitive environments such as wetlands, ponds, creeks or extensive areas of natural vegetation were not identified on site or in the immediate surrounds.

2.4.9 Landscaped Areas and Visible Signs of Plant Stress

The north-western end of the site was grassed and there were three other more localised patches of grass between the taxiways in the south-eastern end of the site. The grass was in average condition and there were occasional patches of exposed soils.

2.5 Surrounding Land Use

The site was surrounded by other parts of Bankstown Airport, generally including runways and taxiways. The airport fuel facility was approximately 30-40m to the north of the site.

2.6 Underground Services

The 'Before You Dig Australia' (BYDA) plans were reviewed for the investigation in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Local services plans were also supplied by the airport. The local services plans identified various underground services exist on site, most notably an underground stormwater drainage network. There is a potential for the trenches associated with this infrastructure, and the associated pipework, to act as preferential pathways for contaminant migration.

3 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Regional geological information was reviewed for the investigation. The information was sourced from the Lotsearch report attached in the appendices. The report indicates that the site is predominantly underlain by alluvium comprising unconsolidated alluvial clay, silt, sand and gravel deposits. The northern-most tip of the site is mapped as being underlain by Ashfield Shale of the Wianamatta Group, which typically consists of black to dark grey shale and laminite.

3.2 Acid Sulfate Soil (ASS) Risk and Planning

A review of the acid sulfate soil (ASS) risk map for Liverpool prepared by Department of Land and Water Conservation (1997)⁷ indicated that the site is located in an area classed as 'disturbed terrain'. The 'disturbed terrain' classification is adopted in large scale filled areas which often occur during reclamation of low lying swamps for urban development, in areas which may have been mined or dredged or have undergone heavy ground disturbance through general urban development or the construction of dams and levees. The majority of landforms within these areas are not expected to encounter ASS materials. However, localised occurrences may be found at depth. Disturbance of these materials will result in a risk that will vary with elevation and depth of disturbance.

ASS information presented in the Lotsearch report indicated that the site is predominantly located within a Class 3 ASS risk area. Works in a Class 3 risk area that could pose an environmental risk in terms of ASS include works at depths beyond 1m below existing ground level or works by which the water table is likely to be lowered beyond 1m below existing ground level.

3.3 Hydrogeology

Hydrogeological information presented in the Lotsearch report indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There were approximately 40 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located approximately 890m from the site. This was utilised for 'other' purposes;
- The majority of the bores were registered for monitoring purposes and were located over 900m to the south, west and south-west of the site; and
- There were no nearby bores (i.e. within 1,000m) registered for domestic, irrigation or water supply
 uses.

The information reviewed for the PSI indicates that the subsurface conditions at the site are likely to consist of fill overlying alluvial soils and deeper bedrock. There are no registered groundwater users at the site or in the immediate vicinity. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. Use of groundwater is not proposed as part of the development.

⁷ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map - Liverpool (Series 9030S2, Ed 2)

JKEnvironments

3.4 Receiving Water Bodies

Based on the topography and groundwater flow direction being towards the west and south-west, the Georges River is the nearest down gradient receiving water body. This river supports an estuarine (marine) ecosystem and is a potential receptor. Recreational water use in the river is also expected to occur.

4 SITE HISTORY INFORMATION

4.1 Review of Historical Aerial Photographs

Historical aerial photographs were reviewed for the investigation. The information was sourced from the Lotsearch report. JKE has reviewed the photographs and summarised relevant information in the following table:

Table 4-1: Summary of Historical Aerial Photographs

Year	Details
	On-site: The site appeared to be vacant and vegetated. Various unpaved tracks extended throughout. It is possible that agricultural activities such as grazing were occurring or had previously occurred in the eastern end of the site.
	Off-site: The surrounds appeared similar to the site and were most likely vacant bushland or used for grazing purposes.
:	On-site: The site had been cleared and formed part of a larger property occupied by an airport. The site appeared unpaved and surfaced with grass and exposed soils. There were several small planes parked in the eastern area of the site.
	Off-site: The surrounds had also been cleared or vegetation and appeared to form part of the airport property. Two large buildings were located to the east of the site which were most likely hangars for planes and for other uses associated with the airport.
	On-site: The eastern area of the site had been paved. The remainder of the site appeared similar to the previous photograph.
	Off-site: Further development/redevelopment had occurred to the east of the site with the construction of additional buildings and paved areas.
1955, 1956	The site and the immediate surrounds appeared generally similar to the previous photograph.
	The site and the immediate surrounds appeared generally similar to the previous photograph, except that a new runway extended along the southern boundary of the site.
1970	On-site: A number of planes were parked on site in the 1970 photograph. A path extended towards what may have been a square-shaped, fenced compound in the central south-eastern area of the site. The purpose of this compound was not obvious/known based on the photograph.
	Off-site: Further development of the airport occurred via the construction of additional runways and taxiways.
1982 1986	On-site: A path extended towards a circular feature located south of the compound area. This may have been a weather station, however, the use/purpose of this area was not clear based on the photograph. Some soil scouring was visible in the central eastern areas of the site in the 1991 photograph.
	Off-site: The off-site areas appeared generally similar to the previous photograph, except that further buildings were constructed to the north and north-west of the site during this period.
	On-site: The grass had been cleared from the central and south-eastern sections of the site and these areas were surfaced with pavement, more closely reflecting the current (2023) layout.
	Off-site: The off-site areas appeared generally similar to the previous photograph.
	these areas were surfaced with pavement, more closely reflecting the current (2023) lay

Year	Details
2007	The site and the immediate surrounds appeared generally similar to the previous photograph
2011	during this period. The circular pavements were visible in the western section of the site
2016	(associated with the wind sock and other circular pavement observed during our site inspection) by
2020	the time of the 2020 photograph.

4.2 NSW EPA and Department of Defence Records

A review of the NSW EPA and Department of Defence databases was undertaken for the PSI. Information from the following databases were sourced from the Lotsearch report:

- Records maintained in relation to contaminated land under Section 58 of the CLM Act 1997;
- Records of sites notified in accordance with the Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)⁸;
- Licensed activities under the Protection of the Environment Operations Act (1997)⁹;
- Sites being investigated under the NSW EPA PFAS investigation program;
- Sites being investigated by the Department of Defence for PFAS contamination; and
- Sites being managed by the Department of Defence for PFAS contamination.

The search included the site and surrounding areas in the report buffer. A summary of the information is provided below:

Table 4-2: NSW EPA and Department of Defence Records

Records	On-site	Off-site
Records under Section 58 of the CLM Act 1997	None	None
Records under the Duty to Report Contamination under Section 60 of the CLM Act 1997	None	There was one property listed in the report buffer. This property was a service station located approximately 900m to the south of the site and is therefore not of concern.
Licences under the POEO Act 1997	Various surrendered licenses were listed for the wider airport. These were generally associated with chemical storage/production and waste storage production. These activities in general have the potential to result in land contamination and have been considered in the CSM.	Current and historical licenses were identified for several properties within the report buffer, including the application of herbicides along waterways. However, these activities are considered unlikely to pose a contamination risk to the site or represent and off-site source of contamination. Other surrendered licenses related to properties over 800m from the site and are not of concern.
Records relating to the NSW EPA PFAS Investigation Program	Bankstown Airport is listed in the investigation register.	The wider surrounds are also included in this listing.

⁸ NSW EPA, (2015). *Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997.* (referred to as Duty to Report Contamination)

⁹ Protection of the Environment Operations Act 1997 (NSW) (referred to as POEO Act 1997)

Records	On-site	Off-site
		The listing for Holsworthy Barracks located over 1,000m to the west of the site is not of concern.
Records relating to the Department of Defence PFAS management and investigation programs	None	None

4.3 Historical Business Directory and Additional Lotsearch Information

Historical business records and other relevant information were reviewed for the investigation. The information was sourced from the Lotsearch report and summarised in the following table:

Table 4-3: Historical Business Directory and other Records

Records	On-site	Off-site
Historical dry cleaners, motor garages and service stations	None	None
Other historical businesses that could represent potential sources of contamination	Aviation activities, including aircraft maintenance and repair, have been registered to various businesses within the wider Bankstown Airport.	The activities also occurred in the surrounds.
National waste management site database	None	None
National liquid fuel facilities	None	Two facilities were registered approximately 790m to the north-east of the site. Due to the distance, these facilities are not of concern.
Mapped heritage items	The Bankstown Aerodrome is listed as a general item of local significance in the Canterbury Bankstown Local Environmental Plan 2023.	The Bankstown Airport Air Traffic Control Tower located approximately 500m to the south-west of the site is on the Commonwealth Heritage List.
Mapped ecological constraints	None	None in the immediate surrounds.
Mapped naturally occurring asbestos	None	None
Unexploded Ordnance	The site is listed on the national unexploded ordnance register. The listing states "This site was a Major WWII [World War 2] Airfield. Small	This listing also captures the surrounds.

Records	On-site	Off-site
	quantities of ammunition up to 20mm have been found."	

4.4 Summary of Site History Information

The site was vacant bushland and was potentially used for agricultural (grazing purposes) until sometime between 1930 and 1943. Redevelopment of the site for use as an airport occurred prior to 1943 and it is understood that the airport was utilised as an airfield during World War 2. The site appeared primarily to be an undeveloped area of the airport that did not include any buildings, and was used to park planes and as taxiways.

Previous investigations identified historically imported fill which was found to depths of approximately 1mBGL or less. Limited soil investigation undertaken previous by JKE did not identify contamination that was considered to pose a risk in the airport land use setting.

PFAS source zones associated with fire incidents and use/storage of AFFF were identified by others in the surrounds. Elevated PFAS concentrations have historically been reported in groundwater at the site and in the wider airport surrounds.

A fuel storage/refuelling facility is located in relatively close proximity to the north of the site.

The information presented above is based on a weight of evidence assessment of the site history documentation and observations made by JKE.

4.5 Integrity of Site History Information

The majority of the site history information was obtained from government organisations as outlined in the relevant sections of this report. The veracity of the information from these sources is considered to be relatively high. A certain degree of information loss can be expected given the lack of specific land use details over time. JKE has relied upon the Lotsearch report and have not independently verified any information contained within. However, it is noted that the Lotsearch report is generated based on databases maintained by various government agencies and is expected to be reliable.

5 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

A review of the CSM in relation to source, pathway and receptor (SPR) linkages has been undertaken as part of the Tier 1 risk assessment process, as outlined in Section 10.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
Fill – The site has been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated. Fill to a maximum of 1m deep was identified during the JKE screening. The limited soil analysis undertaken on samples collected from two boreholes drilled on site for the JKE screening in early 2023 did not identify contaminants that were assessed to pose a risk to human health.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs), asbestos and PFAS.
Aviation/Airport Use – The site has formed part of the wider airport property since the early/mid-1900s. The site appears to have primarily been grassed and used for the temporary parking of planes, and/or as taxiways.	Heavy metals, TRH, BTEX, PFAS and PAHs.
Historical Agricultural Use – The eastern part of the site appears to have been used for grazing purposes prior to redevelopment for the airport use. We consider that there is a low potential for contamination associated with such low intensity agricultural use during this period of time, however, contamination may arise from use and maintenance of machinery, demolition of small structures and from irrigation pipes made from asbestos cement.	Heavy metals, TRH, PAHs, OCPs, PCBs and asbestos. JKE note that OCPs only became commercially available in the 1940s. Prior to this time pesticides were predominantly heavy metal compounds.
Hazardous Building Material — There were no former structures observed on site in the aerial photographs. However, there was a small compound area and an unknown circular feature observed at the site circa 1960-1990. Hazardous building materials may be present as a result of former building and demolition activities.	Asbestos, lead and PCBs.
Off-Site Areas – Various activities occur or have occurred historically within the airport which could have	Heavy metals, TRH/BTEX, PFAS and volatile organic compounds (VOCs) including tetrachloroethene (also

Source / AEC	CoPC
resulted in contamination. This includes the PFAS-related activities and source areas discussed previously, the fuel storage/refuelling area to the north of the site, chemical storage/production and waste storage production, and aviation activities, including aircraft maintenance and repair.	known as perchloroethylene - PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC).

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM

Table 5-2: CSM	The natestial machanisms for contamination are most likely to include (to add on the state)
Potential mechanism for contamination	The potential mechanisms for contamination are most likely to include 'top-down' impacts and spills. There is a potential for sub-surface releases to have occurred if deep fill (or other buried industrial infrastructure) is present, although this is considered to be the least likely mechanism for contamination. The mechanisms for contamination from off-site sources could have occurred via 'top down' impacts and spills, or sub-surface release. Impacts to the site could occur via the migration of contaminated groundwater.
Affected media	Soil and groundwater have been identified as potentially affected media.
	Potential soil vapour impacts will be assessed initially using the soil and groundwater data to establish with soil vapour investigation is needed.
Receptor identification	Human receptors include site occupants/users (including adults), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users in the same land use scenario as the site, and recreational water users within Georges River.
	Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and marine ecology in Georges River.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene, VOCs and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include primary/direct contact and ingestion.
	Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens/landscaped areas, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings/hangars.
	Exposure to groundwater could occur where groundwater migrates to Georges River. It is not expected that exposure to groundwater would occur on site where no deep excavations are proposed.

Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed buildings/hangars (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; and Migration of groundwater off-site and into nearby water bodies, including aquatic ecosystems and those being used for recreation.
Presence of preferential pathways for contaminant movement	Preferential pathways for contaminant migration exist and this will require further consideration (in iterations of the CSM) in the event that mobile contamination is identified.

6 SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation is summarised in Section 8.1 and the detailed evaluation is provided in the appendices.

6.1.1 Step 1 - State the Problem

The CSM identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and to provide a discussion on potential contamination-related risks and constraints, and preliminary advice/commentary regarding potential risk mitigation measures.

A waste classification is required prior to off-site disposal of excavated soil associated with the development works.

6.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?
- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?

6.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils and groundwater for the CoPC identified in the CSM. Groundwater samples
 were not analysed for pesticides and PCBs as these contaminants were not of concern in groundwater;
 and
- Field and laboratory QA/QC data.

6.1.4 Step 4 - Define the Study Boundary

The sampling was confined to the site boundaries as shown in Figure 2 was limited vertically to a maximum depth of approximately 7m for groundwater and approximately 2m for soils (spatial boundary). The sampling was completed in November 2023 (temporal boundary). The assessment of potential risk to adjacent land users has been made based on data collected within the site boundary.

6.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

6.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 7. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this investigation, the individual results have been assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values has not been undertaken due to the limited sampling density.

6.1.5.2 Field and Laboratory QA/QC

Field QA/QC included analysis of inter-laboratory duplicates, intra-laboratory duplicates, trip spikes, trip blanks and rinsate samples. Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, is provided in the Data Quality (QA/QC) Evaluation in the appendices.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the attached laboratory reports. These criteria were developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, JKE typically adopt the most conservative concentration reported (or in some cases, consider the data from the affected sample as an estimate).

6.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

6.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results is undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis has been adopted which is that, there is considered to be a complete SPR linkage for the CoPC identified in the CSM unless this linkage can be proven not to (or unlikely to) exist. The null hypothesis has been adopted for this investigation.

Quantitative limits on decision errors were not established for the PSI due to the nominated aims and objectives.

Data Quality Indicators (DQI) for field and laboratory QA/QC samples are defined in the QA/QC Data Evaluation in the appendices. An assessment of the DQI's was made in relation to precision, accuracy, representativeness, completeness and comparability.

6.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. Adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, historical data, and also by the way in which the data were collected.

The sampling plan and methodology are outlined in the following sub-sections.

6.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this investigation is outlined in the table below:

Table 6-1: Soil Sampling Plan and Methodology

Aspect	Input
Sampling Density	Samples were collected from 26 locations (BH101 to BH126 inclusive) as shown on the attached Figure 2. Based on the site area (87,600m²), this number of locations corresponded to a sampling density of approximately one sample per 3,370m². The sampling plan was not designed to meet the minimum sampling density for hotspot identification, as outlined in the NSW EPA Sampling Design Part 1 – Application (2022) ¹⁰ contaminated land guidelines.
Sampling Plan	The sampling locations were placed on a systematic plan with a grid spacing of approximately 60m between sampling location.

¹⁰ NSW EPA, (2022). Sampling design part 1 - application. (referred to as EPA Sampling Design Guidelines 2022)

Acnost	lanut
Aspect	Input Sampling locations were set out using a GPS unit (with vertical and horizontal tolerance of
Set-out and Sampling	approximately ±0.03m). In-situ sampling locations were checked for underground services by an
Equipment	external contractor prior to sampling.
qap	one was contracted prior to campung.
	Samples were primarily collected using a push tube drill rig. Soil samples were obtained from
	disposable polyethylene push tube samplers. Eight of the boreholes were combined with the JKG
	investigation and these locations were drilled using a rig equipped with spiral flight augers. Soil
	samples from this drill rig were obtained from a Standard Penetration Test (SPT) split-spoon
	sampler, or directly from the auger when conditions did not allow use of the SPT sampler.
Sample	Soil samples were obtained over a three-day period in late November 2023, in accordance with
Collection and	standard field procedures. Additional field procedures were implemented to minimise potential
Field QA/QC	cross contamination impacts relating to PFAS analysis. Soil samples were collected from the fill and
	natural profiles based on field observations. The sample depths are shown on the logs attached in
	the appendices.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace.
	Selected soil samples obtained for PFAS analysis were placed in PFAS dedicated sampling
	containers (plastic with no Teflon seals) supplied by the laboratory. Samples for asbestos analysis
	were placed in zip-lock plastic bags. During sampling, soil at selected depths was split into primary
	and duplicate samples for field QA/QC analysis. The field splitting procedure included splitting the
	soil by hand and alternately filling the sampling containers to obtain a representative split sample.
Field	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp was used to screen the
Screening	samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs was
	undertaken on soil samples using the soil sample headspace method. VOC data was obtained from
	partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration
	records are maintained on file by JKE.
	Fill/spoil at the sampling locations was visually inspected during the works for the presence of
	fibre cement fragments.
Decontami-	Sampling personnel used disposable nitrile gloves during sampling activities. Re-usable sampling equipment was decontaminated via the use of water and clean, wetted down rags due to the PFAS
nation and Sample	sampling requirements.
Preservation	Jamping regarience.
	Soil samples were preserved by immediate storage in an insulated sample container with ice or ice
	bricks. On completion of the fieldwork, the samples were stored temporarily in fridges in the JKE
	warehouse before being delivered in the insulated sample container to a NATA registered
	laboratory for analysis under standard chain of custody (COC) procedures.

6.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Table 6-2: Groundwater Sampling Plan and Methodology

Aspect	Input
Sampling Plan	Groundwater monitoring wells were installed in five of the boreholes drilled for soil sampling, generally positioned for site coverage. The wells included MW102 (BH102), MW107 (BH107), MW114 (BH114), MW121 (BH121 and MW126 (BH126). Considering the anticipated groundwater flow direction, the wells were considered to provide reasonable coverage to assess widespread groundwater contamination impacts from on site and off-site sources.

Assast	Inner the Control of
Aspect	Input The provider in a well construction details are deconserted as the conservation bounded large.
Monitoring	The monitoring well construction details are documented on the appropriate borehole logs
Well Installation	attached in the appendices. The monitoring wells were installed to depths of approximately 6-
Procedure	 7mBGL. The wells were generally constructed as follows: 50mm diameter Class 18 PVC (machine slotted screen) was installed in the lower section of the well to intersect groundwater;
	50mm diameter Class 18 PVC casing was installed in the upper section of the well (screw fixed), with the rubber o-ring removed to limit interference for PFAS sampling; A 2 man and filtransial and a second the content of the property
	A 2mm sand filter pack was used around the screen section for groundwater infiltration; A hydrated bontonite scal (alug was used on ten of the scale heavel the well and
	 A hydrated bentonite seal/plug was used on top of the sand pack to seal the well; and A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water.
	The monitoring well installation, including the screen lengths, were considered suitable for assessment of general groundwater quality with regards to Table 5 in Schedule B2 of NEPM 2013.
	The relative heights of the monitoring wells were surveyed using the previously-mentioned GPS.
Monitoring Well Development	The monitoring wells were developed on 21 November 2023 using a submersible electrical pump. Due to the hydrogeological conditions, groundwater inflow into the wells was relatively low, therefore the wells were pumped until they were effectively dry.
	The field monitoring records and calibration data are attached in the appendices.
Groundwater Sampling	The monitoring wells were allowed to recharge for approximately three days after development. Groundwater samples were obtained on 24 November 2023.
	Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter. The monitoring well head space was checked for VOCs using a calibrated PID unit. The samples were obtained using a peristaltic pump/disposable plastic bailer. During sampling, the following parameters were monitored using calibrated field instruments:
	Standing water level (SWL) using an electronic dip meter; and
	 pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter.
	Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units, the difference in conductivity was less than 10%, and when the SWL was not in drawdown.
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling was transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data are attached in the appendices.
Decontaminant and Sample Preservation	During development, the pump was flushed between monitoring wells with potable water (single-use tubing was used for each well). The pump tubing was discarded after each sampling event and replaced therefore no decontamination procedure was considered necessary.

Aspect	Input
	The samples were preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples were temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

6.3.1 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 6-3: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	338230, 338230-A and 338704
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	40805 and 40928

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'commercial/industrial' exposure scenario (HIL-D);
- Health Screening Levels (HSLs) for a 'commercial/industrial' exposure scenario (HSL-D). HSLs were
 calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to
 1m;
- HIL-D criteria were adopted for PFAS assessment based on Table 2 in The PFAS National Environmental Management Plan (NEMP) Version 2.0 2020¹¹;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹²; and
- Asbestos was assessed on the basis of presence/absence (detected/not-detected) and using the HSL-D criteria.

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an "commercial/industrial" exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹³;
- ESLs were adopted based on the soil type (coarse or fine);
- The ecological (direct exposure) guidelines for soil were adopted for PFAS assessment based on Table 3 in NEMP 2020; and
- EILs for selected metals were calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁴. Cation Exchange Capacity (CEC) analysis occurred for several gravelly sand fill samples and an average CEC concentration was applied to select the ACL values for all samples with this soil type. This method is considered to be adequate for the Tier 1 screening.

¹⁴ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4*. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

¹¹ Heads of EPAs Australia and New Zealand (HEPA). PFAS National Environmental Management Plan Version 2.0 - January 2020 (referred to as NEMP 2020)

¹² Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

¹³ Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997) (referred to as the Canadian Soil Quality Guidelines)

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁵ as outlined in the following table:

Table 7-1: Waste Categories

Category Description			
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste. 		
Restricted Solid Waste (non-putrescible)	 If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP ≤ TCLP2 and SCC ≤ SCC2 then treat as restricted solid waste. 		
Hazardous Waste	 If SCC > CT2 then TCLP not needed to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste. 		
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette. 		

The PFAS data were assessed against the NSW EPA Addendum to the Waste Classification Guidelines (2014) – Part 1: classifying waste.

7.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁶. Environmental values for this investigation include aquatic ecosystems, human uses (incidental contact and recreational water use), and human-health risks in non-use scenarios (vapour intrusion).

¹⁶ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁵ NSW EPA, (2014). Waste Classification Guidelines, Part 1: Classifying Waste. (referred to as Waste Classification Guidelines 2014)

7.2.1 Human Health

- HSLs for a 'commercial/industrial' exposure scenario (HSL-D). HSLs were calculated based conservatively on a 'sand' soil type and groundwater depth of 2-4m;
- The Australian Drinking Water Guidelines 2011 (updated 2021)¹⁷ were multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies). These have been deemed as 'recreational' SAC; and
- The recreational water quality guideline value was adopted for PFAS assessment based on Table 1 in NEMP 2020.

7.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of marine species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁸. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

The ecological (interim marine) water quality guidelines were adopted for PFAS assessment based on NEMP 2020, based on 95% protection (slightly to moderately disturbed systems).

¹⁸ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

¹⁷ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

8 RESULTS

8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Table 8-1: Summary of Subsurface Conditions

Profile	Description			
Pavement	Asphaltic concrete pavement was encountered at the surface in BH103, BH106, and BH115 to BH125 (inclusive). The pavement thickness was up to approximately 0.12m.			
Fill	Fill was encountered beneath the pavements in the locations listed above, or at the surface in all remaining boreholes. Where pavements were encountered, the underlying fill layer typically comprised gravelly sand roadbase which was underlain by different fill profiles typically comprising clayey sand and, to a lesser extent, silty clay. In boreholes where fill was encountered at the surface, the fill generally included silty clay.			
	The fill had trace inclusions of gravels, and occasionally ash. Building and demolition rubble inclusions where largely not observed, with the exception of the occasional fragment of concrete. There were no odours or staining in the fill.			
	The approximate fill depth (ground surface to base of the fill profile) at each borehole location is shown on Figure 2. The fill depths generally ranged from 0.5m to 1m.			
Natural Soil	Natural soil was identified beneath the fill in all boreholes and extended to the termination depth of each borehole (maximum of 7m). The natural soil included silty clay. There were no odours or staining in the natural soil.			
Bedrock	Bedrock was not encountered within the scope of the investigation, to a maximum borehole depth of 7m.			
Groundwater	Groundwater seepage was encountered in BH107 (at approximately 3m), BH120 (approximately 0.2m in the roadbase), and BH121 and BH126 (approximately 6.2m). All remaining boreholes were dry during drilling and on completion. Groundwater levels recorded in the monitoring wells installed during the PSI are discussed in Section 8.3 below.			

8.3 Field Screening

A summary of the field screening results is presented in the following table:

Table 8-2: Summary of Field Screening

Aspect	Details				
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report Table S2 and the COC documents attached in the appendices. PID results ranged from 0ppm to 96.1ppm. Samples with elevated PID readings were analysed for TRH and BTEX.				
Groundwater Depth & Flow	SWLs measured in the monitoring wells installed at the site ranged from 2.13m (MW107) to 5.55m (MW126). Groundwater RLs calculated based on the ground surface levels and the SWLs ranged from RL3.7m to RL5.17m. The data are summarised below:				
	Location	Surface RL (mAHD)	Groundwater SWL (mBGL)	Groundwater RL mAHD	
	MW102	7.79	3.23	4.56	
1	MW107	6.19	2.13	4.06	
	MW114	8.38	3.21	5.17	
	MW121	8.37	4.52	3.85	
	MW126	9.2	5.5	3.7	
	Mapping Program) as shown on Figure 3. Groundwater flow generally occurs in a down gradient direction perpendicular to the groundwater elevation contours. The contour plot indicates that groundwater generally flows towards the west and south-west which is consistent with expectations.				
Groundwater Field Parameters	Field measurements recorded during sampling were as follows: - pH ranged from pH 3.96 to pH 6.71; - EC ranged from 20,616μS/cm to 28,436μS/cm; - Eh ranged from -92.4mV to 3.4mV; and - DO ranged from 4.2ppm to 13.3ppm. The PID readings in the monitoring well headspace recorded during sampling ranged from 0.2ppm to 0.6ppm which indicated there were relatively low concentrations of PID-detectable VOCs in the monitoring well headspace.				
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) was not detected using the interphase probe during groundwater sampling.				

8.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

8.4.1 Human Health and Environmental (Ecological) Assessment

The soil contamination results are presented in Tables S1 to S6 (inclusive), SP1 and SP2 attached in the appendices. All reported contaminant concentrations were below the human health and ecological-based SAC.

8.4.2 Waste Classification Assessment

The soil waste classification results are presented in Tables S7, S8, SP3 and SP4 attached in the appendices. Exceedances of the CT1 criteria occurred for lead in two primary fill samples, nickel in nine primary fill samples, and benzo(a)pyrene in one primary fill sample.

Leachate (TCLP) analysis was scheduled on primary fill samples with CT1 exceedances, together with a selection of the primary samples analysed for PFAS. All lead, nickel, benzo(a)pyrene and PFAS TCLP results were below the TCLP1 criteria.

8.5 Groundwater Laboratory Results

The groundwater laboratory results were assessed against the SAC presented in Section 7.2. Individual SAC are shown in the report tables attached in the appendices.

The groundwater results are presented in Tables G1, G2, G3, GP1 and GP2 attached in the appendices. A summary of the results is presented below:

- The pH of the groundwater samples from MW107, MW114, MW121 and MW126 was outside the lower-bound of the range for marine and recreational waters;
- The nickel concentration in MW107 exceeded the recreational SAC;
- Concentrations of arsenic and lead (MW107), copper and zinc (MW107, MW114, MW121 and MW126), and nickel (MW107 and MW114) exceeded the ecological SAC for marine waters;
- All reported PFAS concentrations in groundwater were below the human health and ecological-based SAC; and
- All volatile contaminant concentrations (TRH, BTEX and VOCs) were below the laboratory PQLs and were less than the SAC.

9 PRELIMINARY WASTE CLASSIFICATION ASSESSMENT

9.1 Waste Classification of Fill

Based on the results of the waste classification assessment, and at the time of reporting, the fill material is assigned a preliminary classification of **General Solid Waste (non-putrescible)**. In the event that surplus fill requires disposal as part of the proposed development works, a final waste classification assessment will need to occur prior to disposal and the quantity of this waste stream must be confirmed as part of this process. The final waste classification could occur under Part 1 of the waste classification guidelines, or an alternative classification under a resource recovery exemption/order could be attempted.

The occurrence of lead, nickel and benzo(a)pyrene in some fill samples at concentrations above the CT1 thresholds is likely to mean that fill with these concentrations cannot be disposed of to a licensed recycling facility. Recycling facilities generally have their acceptance criteria set based on the CT1 thresholds in our experience.

9.2 Classification of Natural Soil

Based on the scope of work undertaken for this assessment, and at the time of reporting, JKE is of the opinion that the natural soil at the site does not meet the definition of VENM due to the site history and the occurrence of traces of PFAS in the natural soils. The natural soil does however fall into the **General Solid Waste (non-putrescible)** category based on the chemical analysis undertaken for the PSI.

In the event that natural soil requires disposal as part of the proposed development works, a final waste classification assessment will need to occur prior to disposal and the quantity of this waste stream must be confirmed as part of this process. The final waste classification could occur under Part 1 of the waste classification guidelines, or an alternative classification under a resource recovery exemption/order could be attempted. The potential occurrence of ASS materials at depth may impact the classification of the natural soils and this will also need to be considered in finalising the waste classification for the natural soil waste stream.

10 DISCUSSION

10.1 Contamination Sources/AEC and Potential for Site Contamination

Based on the scope of work undertaken for this investigation, JKE identified the following potential contamination sources/AEC:

- Fill;
- Aviation/airport use;
- Historical agricultural use;
- Hazardous building materials; and
- Off-site areas within the wider airport.

Considering the above, and based on a qualitative assessment of various lines of evidence as discussed throughout this report, JKE is of the opinion that there is a potential for site contamination. Table 1 of the Managing Land Contamination Planning Guidelines SEPP55 Remediation of Land (1998)¹⁹ list agricultural activities and airports as activities that may cause contamination.

The preliminary soil and groundwater data collected for the investigation is discussed further in the following subsection, as part of the Tier 1 risk assessment.

10.2 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

10.2.1 Soil

All soil contaminant concentrations were below the human health and ecological-based SAC. On this basis, there were no complete SPR linkages and no actual/unacceptable risks were identified.

10.2.2 Groundwater

Nickel was identified in groundwater in one monitoring well (MW107) at a concentration that was above the recreational SAC. MW107 was in the down gradient area of the site and the nickel concentration was substantially higher (i.e. by an order of magnitude) than the concentrations reported in the other wells. MW107 also reported concentrations of arsenic and zinc that were an order of magnitude higher than groundwater samples collected from other monitoring wells during the PSI. The source of these heavy metals is not known, however, it is noted that MW107 recorded the shallowest groundwater and also the lowest pH compared to the other wells.

¹⁹ DUAP/EPA, (1998). Managing Land Contamination Planning Guidelines, SEPP55 Remediation of Land (referred to as SEPP55 Planning Guidelines)

Arsenic, lead, copper, nickel and zinc were reported in various groundwater samples at concentrations that exceeded the marine ecological SAC. The occurrence of copper and zinc (and acidic pH as mentioned previously) in the groundwater is considered most likely to be associated with regional conditions. The arsenic, lead and more elevated concentrations of nickel and zinc in MW107 may be associated with a localised groundwater impact. However, the source of this impact is not known.

Considering the proximity of the nearest receiving water body (i.e. Georges River) and also considering that elevated nickel above the recreational SAC, and arsenic and lead above the ecological SAC, was only identified in one of the five groundwater monitoring wells sampled for the PSI, we consider it unlikely that there would be a complete SPR linkage to nickel in groundwater at the down-gradient receptor. The groundwater in MW107 would be diluted with other groundwater as it moves away from the site towards the receptor. The proposed construction activities are also unlikely to result in contact or prolonged exposure to groundwater, and we would not expect that any construction dewatering would be required for a development that does not include major earthworks or construction of basements. On this basis we consider that risks posed to the identified receptors from heavy metals in groundwater, in the context of the proposed development, are relatively low.

10.2.3 Unexploded Ordnance

An assessment in relation to unexploded ordnance was outside the scope of the PSI. Potential risks in this regard will require specialist input from another consultant.

10.3 Decision Statements

The decision statements are addressed below:

Did the site inspection, or does the historical information identify potential contamination sources/AEC at the site?

Yes, as outlined in Section 10.1.

Are any results above the SAC?

Groundwater samples reported pH and some heavy metals concentrations above the SAC as discussed in Section 10.2.

Do potential risks associated with contamination exist, and if so, what are they?

The PSI did not identify any unacceptable contamination risks associated with complete SPR linkages. The soil contamination and subsurface conditions were fairly consistent across the site. However, the soil sampling density was relatively low based on the site area, and sampling occurred from boreholes which limits field observations of the occurrence of asbestos materials (i.e. fibre cement fragments) in soil. Therefore, there is considered to be a potential risk from contamination that could be discovered as an unexpected find.

10.4 Contamination Risks, Constraints and Risk Mitigation

The preliminary investigation did not identify any actual risks that would require remediation or management during the proposed development works. Notwithstanding, the overall soil sampling density was relatively low and sampling occurred from boreholes which does limit observations of the occurrence of asbestos materials (i.e. fibre cement fragments) in soil. Bulk field quantification of soil samples in the field did not occur from the boreholes, and the use of test pits to facilitate bulk field sampling was not practicable on an active airport site. On this basis, there is a potential for unexpected finds to be identified during the proposed development works.

The sampling identified relatively consistent subsurface conditions and soil chemical analysis results across the site. Whilst an increased sampling density would provide added confidence on the potential occurrence of contamination 'hotspots', meeting the recommended sampling density for this site (on a 30m by 30m square grid) would only identify potential hotspots greater than 35.6m in diameter to a 95% confidence level. The site history assessment completed for the PSI indicates that it is unlikely that such extensive impacts would exist, and therefore after completing sampling at a higher density, the potential for localised unexpected finds would remain.

Considering the above, it would be prudent to develop and implement a robust unexpected finds procedure for the project as a risk mitigation tool, that is to be implemented during construction.

If the client wishes to further mitigate potential risks and uncertainty associated with soil waste classifications and the potential occurrence of contamination and/or unexpected finds, then a higher density of soil sampling should occur prior to commencement of tendering for the construction work, and the waste classifications should be finalised.

11 CONCLUSIONS AND RECOMMENDATIONS

The investigation included a review of historical information, soil sampling from 26 boreholes and groundwater sampling from five groundwater monitoring wells. The review of historical information indicated the following:

- The site was vacant bushland and was potentially used for agricultural (grazing purposes) until sometime between 1930 and 1943. Redevelopment of the site for use as an airport occurred prior to 1943 and it is understood that the airport was utilised as an airfield during World War 2. The site appeared primarily to be an undeveloped area of the airport that did not include any buildings, and was used to park planes and as taxiways;
- Previous investigations identified historically imported fill which was found to depths of approximately 1mBGL or less. Limited soil investigation undertaken previous by JKE did not identify contamination that was considered to pose a risk in the airport land use setting;
- PFAS source zones associated with fire incidents and use/storage of AFFF were identified by others in the surrounds. Elevated PFAS concentrations have historically been reported in groundwater at the site and in the wider airport surrounds; and
- A fuel storage/refuelling facility is located in relatively close proximity to the north of the site.

Based on the scope of work undertaken for this investigation, JKE identified the following potential contamination sources/AEC:

- Fill;
- Aviation/airport use;
- Historical agricultural use;
- Hazardous building materials; and
- Off-site areas within the wider airport.

The boreholes encountered fill generally to depths ranging from 0.5m to 1m. The fill contained little to no building/demolition rubble inclusions and there were no odours or staining observed. The fill was underlain by natural silty clay soil. Groundwater was identified at depths ranging from appropriately 2mBGL to 5.5mBGL and was inferred to be flowing towards the west and south-west.

All soil contaminant concentrations were below the human health and ecological-based SAC. The pH was outside the acceptable range in groundwater, and heavy metals were also detected in groundwater at concentrations that exceeded the ecological SAC. The nickel concentration in one groundwater sample exceeded the human health (recreational) SAC.

The PSI did not identify any unacceptable contamination risks associated with complete SPR linkages. The soil contamination and subsurface conditions were fairly consistent across the site. However, the soil sampling density was relatively low based on the site area, and sampling occurred from boreholes which limits field observations of the occurrence of asbestos materials (i.e. fibre cement fragments) in soil. Therefore, there is considered to be a potential risk from contamination that could be discovered as an unexpected find.

Considering the findings of the PSI, we recommend that a robust unexpected finds procedure be developed and implemented for the project to mitigate potential risks associated with contamination. If the client wishes to further mitigate potential risks and uncertainty associated with soil waste classifications and the potential occurrence of contamination and/or unexpected finds, then a higher density of soil sampling should occur prior to commencement of tendering for the construction work, and the waste classifications should be finalised.

Reference is to be made to Section 9 for the preliminary waste classifications for soil.

An assessment in relation to unexploded ordnance was outside the scope of the PSI. Potential risks in this regard will require specialist input from another consultant.

JKE consider that the report objectives outlined in Section 1.2 have been addressed.

12 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted
 practice for environmental consultants, with reference to applicable environmental regulatory
 authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site.
 These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.


To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

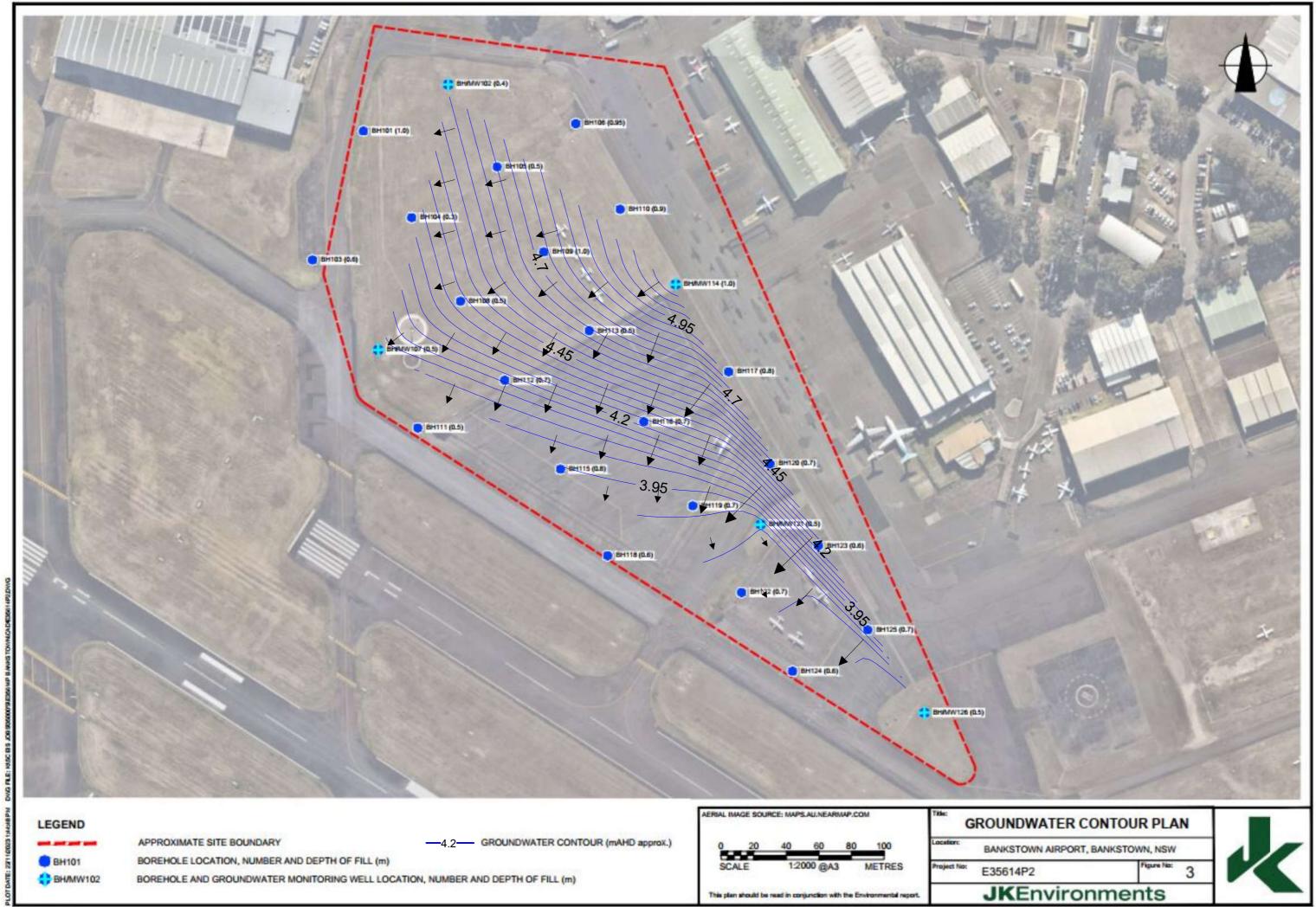
Title:

SITE LOCATION PLAN

Location:

BANKSTOWN AIRPORT, BANKSTOWN, NSW

Project No:


E35614P2

This plan should be read in conjunction with the Environmental report.

JKEnvironments

○ JK ENVIRONMENTS

Appendix B: Site Information and Site History

Proposed Development Plans

ALL DIMENSIONS & LEVELS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO CONSTRUCTION ALL BOUNDARIES & CONTOURS SUBJECT TO SURVEY ALL RIGHTS RESERVED. THIS DRAWING MAY NOT BE REPRODUCED OR TRANSMITTED, IN PART OR IN WHOLE WITHOUT THE PERMISSION OF CRAWFORD ARCHITECTS FYLLTD

© CRAWFORD ARCHITECTS PTY LTD 2019 SUITE 3.01, LEVEL 3 80 MOUNT STREET NORTH SYDNEY, NSW 2060 AUSTRALIA ABN 56 120 779 106 NOMINATED ARCHITECTS: TONY GRAY 5303 & PAUL GODSELL 6726

22060 A011

ARVO STREET, BANKSTOWN AIRPORT

TAXIWAY LEGEND CODE B - RETAINED CODE B - REMOVED CODE B - NEW CODE C - RETAINED CODE C - REMOVED CODE C - NEW GRASS

ALL DIMENSIONS & LEVELS TO BE CHECKED ON SITE BY CONTRACTOR PRIOR TO CONSTRUCTION ALL BOUNDARIES & CONTOURS SUBJECT TO SURVEY ALL RIGHTS RESEVED. THIS DRAWING MAY NOT BE REPRODUCED OR TRANSMITTED, IN PART OR IN WHOLE WITHOUT THE PERMISSION OF GRAWFORD ARCHITECTS FYL LTD

© CRAWFORD ARCHITECTS PTY LTD 2019 SUITE 3.01, LEVEL 3 80 MOUNT STREET NORTH SYDNEY, NSW 2060 AUSTRALIA ABN 56 120 779 106 NOMINATED ARCHITECTS: TONY GRAY 5303 & PAUL GODSELL 6726

ARVO STREET, BANKSTOWN AIRPORT



SCALE 1.1000 @ A1 / 1.2000 @ A3 PROJECT NUMBER DRAWING NUMBER

APPROVED DRAWN P CHECKED PG

DATE DECEMBER 2022 STATUS MDP

crawford architects

Lotsearch Environmental Risk and Planning Report

Date: 14 Nov 2023 13:44:24 Reference: LS049999 EP

Address: Bankstown Airport - Skyfield Development, Bankstown Aerodrome,

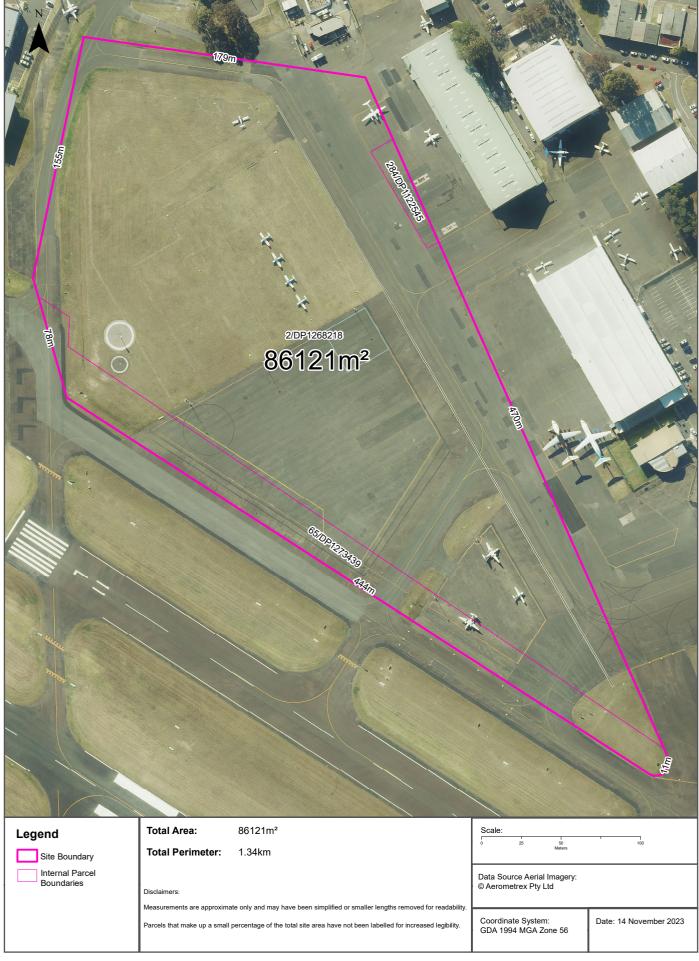
Bankstown, NSW 2200

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

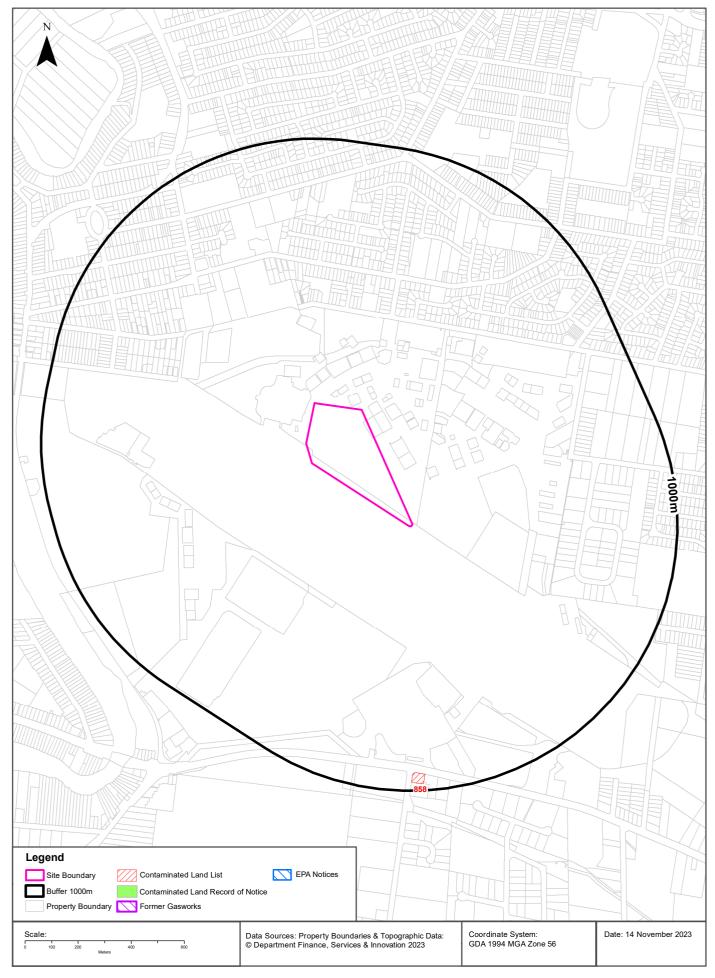
Dataset Listing

Datasets contained within this report, detailing their source and data currency:


Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Customer Service - Spatial Services	14/09/2023	14/09/2023	Quarterly	-	-	-	-
Topographic Data	NSW Department of Customer Service - Spatial Services	22/08/2022	22/08/2022	Annually	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	16/10/2023	10/10/2023	Monthly	1000m	0	0	1
Contaminated Land Records of Notice	Environment Protection Authority	06/10/2023	06/10/2023	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	16/10/2023	14/07/2021	Quarterly	1000m	0	0	0
Notices under the POEO Act 1997	Environment Protection Authority	26/07/2023	26/07/2023	Monthly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	26/05/2022	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	20/09/2023	07/09/2020	Annually	1000m	0	0	2
EPA PFAS Investigation Program	Environment Protection Authority	23/10/2023	23/09/2022	Monthly	2000m	1	1	3
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	19/10/2023	19/10/2023	Monthly	2000m	0	0	1
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	19/10/2023	19/10/2023	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	19/10/2023	19/10/2023	Monthly	2000m	0	0	0
Defence Controlled Areas	Department of Defence	10/10/2023	10/10/2023	Quarterly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	19/10/2023	02/09/2022	Quarterly	2000m	0	0	0
National Unexploded Ordnance (UXO)	Department of Defence	10/10/2023	10/10/2023	Quarterly	2000m	1	1	1
EPA Other Sites with Contamination Issues	Environment Protection Authority	13/11/2023	15/12/2022	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	23/10/2023	23/10/2023	Monthly	1000m	0	0	0
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	23/10/2023	23/10/2023	Monthly	1000m	0	0	1
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	23/10/2023	23/10/2023	Monthly	1000m	5	9	12
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	0	0
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	558	598
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	0
Points of Interest	NSW Department of Customer Service - Spatial Services	13/11/2023	13/11/2023	Quarterly	1000m	1	2	33
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	13/11/2023	13/11/2023	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	13/11/2023	13/11/2023	Quarterly	1000m	0	0	0
Major Easements	NSW Department of Customer Service - Spatial Services	19/10/2023	19/10/2023	Quarterly	1000m	0	0	2
State Forest	Forestry Corporation of NSW	16/08/2022	14/08/2022	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	16/02/2023	31/12/2022	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	29/08/2022	19/08/2019	As required	1000m	1	1	1

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	09/05/2023	23/02/2018	Annually	1000m	0	0	0
National Groundwater Information System (NGIS) Boreholes	Bureau of Meteorology; Water NSW	18/04/2023	13/07/2022	Annually	2000m	0	0	40
NSW Seamless Geology Single Layer: Rock Units	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	2	2	7
NSW Seamless Geology – Single Layer: Trendlines	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
NSW Seamless Geology – Single Layer: Geological Boundaries and Faults	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Annual	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	2	2
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	18/08/2022	27/07/2020	Annually	1000m	1	1	7
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	10/10/2023	01/09/2023	Monthly	500m	2	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	2
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	0	0	0
Dryland Salinity Potential of Western Sydney	NSW Department of Planning, Industry and Environment	12/05/2017	01/01/2002	None planned	1000m	1	1	2
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	16/10/2023	16/10/2023	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	23/10/2023	23/10/2023	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	23/10/2023	23/10/2023	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	23/10/2023	23/10/2023	Monthly	1000m	9	13	14
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	31/08/2023		Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	10/10/2023	15/09/2023	Monthly	1000m	1	1	27
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	20/10/2023	13/04/2022	Annually	1000m	0	0	1
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	20/10/2023	13/04/2022	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	06/09/2023	03/03/2023	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	10/10/2023	22/09/2023	Monthly	1000m	1	1	2
Bush Fire Prone Land	NSW Rural Fire Service	28/09/2023	15/08/2023	Monthly	1000m	0	0	2
NSW Native Vegetation Type Map	NSW Department of Planning and Environment	26/05/2023	12/12/2022	Quarterly	1000m	1	1	9
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	09/05/2023	01/11/2022	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	28/10/2022	26/10/2022	Annually	1000m	0	0	3
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	28/10/2022	26/10/2022	Annually	1000m	0	0	3
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	09/11/2023	09/11/2023	Weekly	10000m	-	-	-

Site Diagram



Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
858	Caltex Service Station	264 Milperra Road	Milperra	Service Station	Regulation under CLM Act not required	Current EPA List	Premise Match	931m	South

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

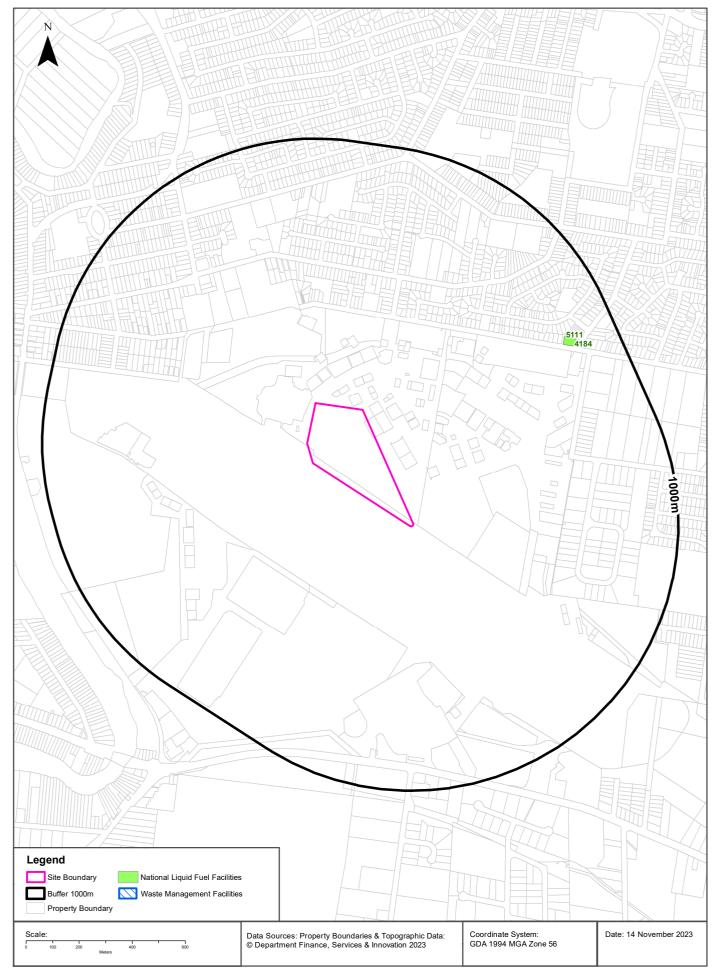
Former Gasworks Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

EPA Notices

Penalty Notices, s.91 & s.92 Clean up Notices and s.96 Prevention Notices within the dataset buffer:


Number	Туре	Name	Address	Status	Issued Date	Act	Offence	Offence Date	Loc Conf	Dist	Dir
N/A	No records in buffer										

NSW EPA Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

National Waste Management Site Database

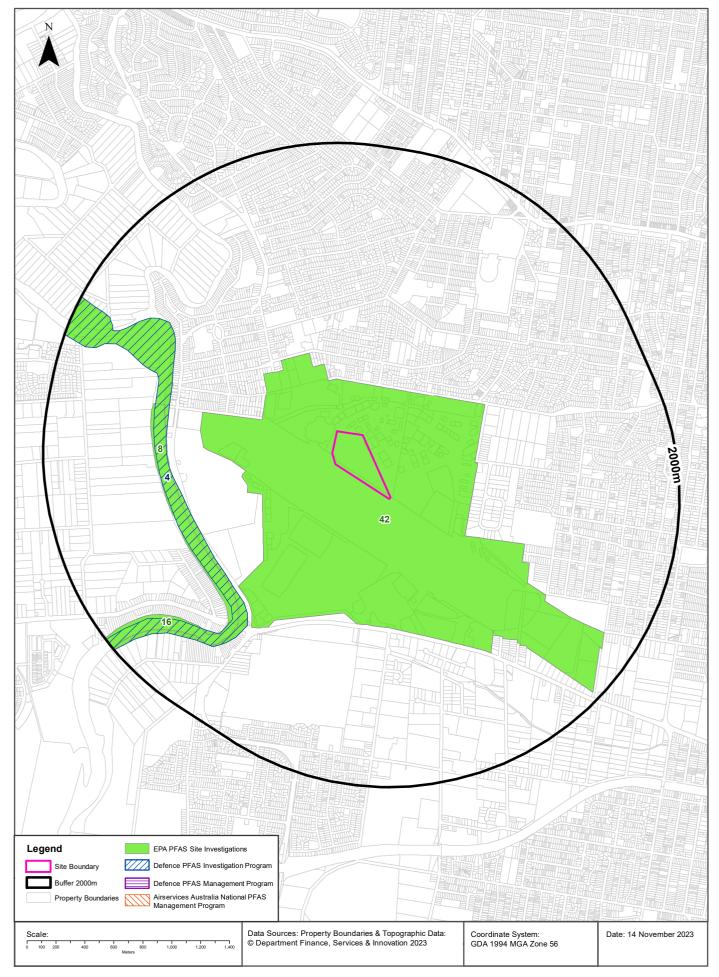
Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:


Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
4184	7-Eleven Pty Ltd	Georges Hall	48 Surrey Avenue	Georges Hall	Petrol Station	Operational		13/07/2012	Premise Match	790m	North East
5111	7-ELEVEN	7-ELEVEN GEORGES HALL	CORNER MARION STREET AND 48 SURREY AVENUE	GEORGES HALL	PETROL STATION	OPERATION AL			Premise Match	790m	North East

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

PFAS Investigation & Management Programs

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
42	Bankstown Airport	3 Avro St, Bankstown NSW 2200	Premise Match	0m	On- site
8	Holsworthy Barracks (including Liverpool Fire Station)	Macarthur Drive, Holsworthy, 2173	Premise Match	1045m	West
16	Botany Bay area	Botany Bay area & Georges River	Area Match	1079m	South West

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
4	Holsworthy Barracks	Holsworthy, New South Wales	Premise Match	1045m	West

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

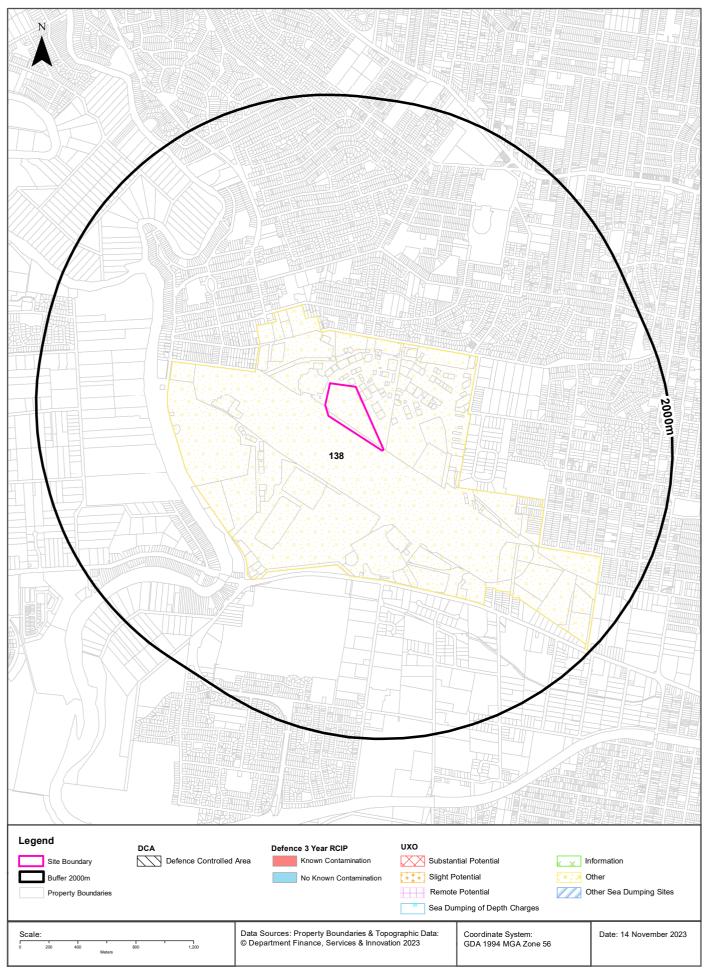
Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

ľ	Map ID	Base Name	Address	Loc Conf	Dist	Dir
ı	N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:


Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites and Unexploded Ordnance

Defence Sites and Unexploded Ordnance

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Defence Controlled Areas (DCA)

Defence Controlled Areas provided by the Department of Defence within the dataset buffer:

Site ID	Location Name	Loc Conf	Dist	Dir
N/A	No records in buffer			

Defence Controlled Areas, Data Custodian: Department of Defence, Australian Government

Defence 3 Year Regional Contamination Investigation Program (RCIP)

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

National Unexploded Ordnance (UXO)

Sites which have been assessed by the Department of Defence for the potential presence of unexploded ordnance within the dataset buffer:

Site ID	Location Name	Category	Area Description	Additional Information	Commonwealth	Loc Conf	Dist	Dir
138	Bankstown Airport	Other	This site was a Major WWII Airfield. Small quantities of ammunition up to 20mm have been found.		Not Commonwealth Land	As Supplied	0m	On-site

National Unexploded Ordnance (UXO), Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- · Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

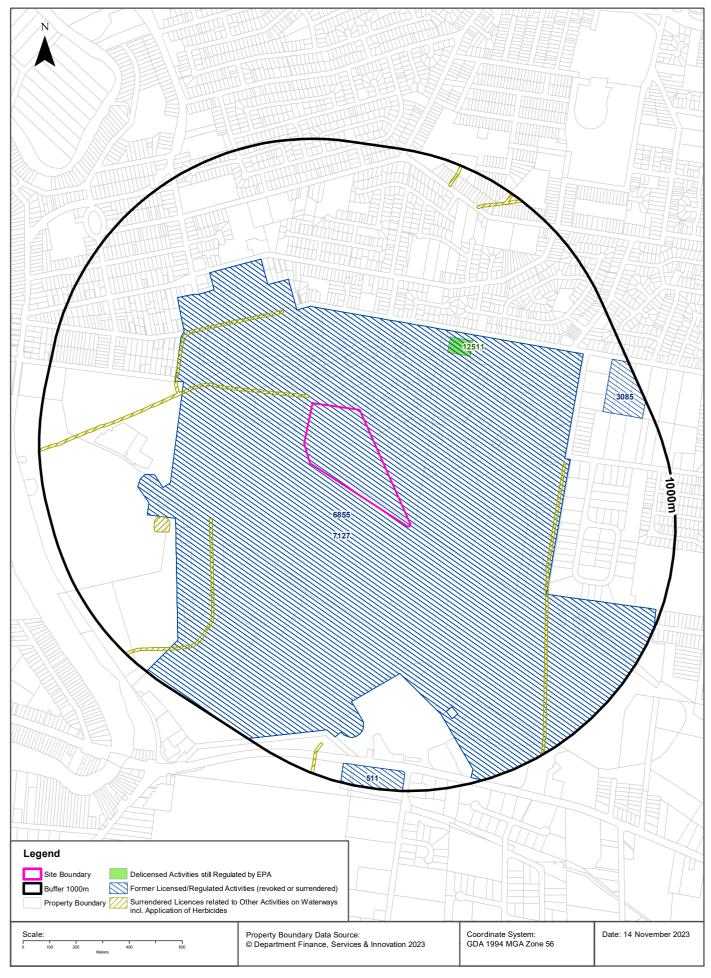
EPA Activities

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							


POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

EPA Activities

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
12511	GLOBUS GROUP PTY LTD	GLOBUS GROUP	1 HARTZELL PLACE	BANKSTOWN	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	395m	North East

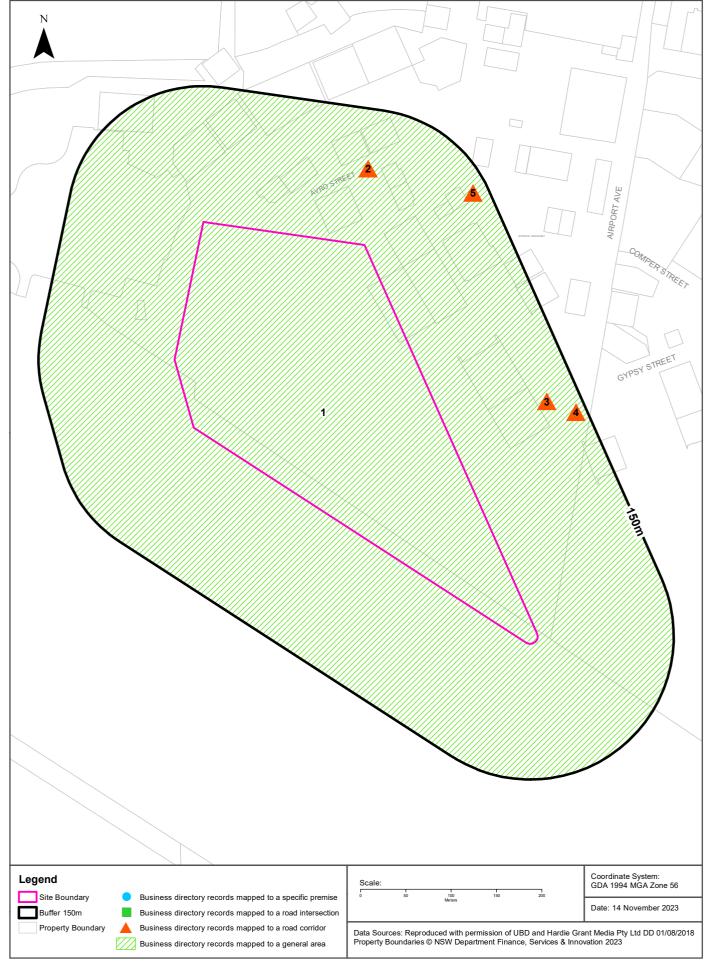
Delicensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
6855	QANTAS AIRWAYS LIMITED	361 MILPERRA ROAD, BANKSTOWN, NSW 2200	Surrendered	20/09/2000	Dangerous goods production	Premise Match	0m	On-site
6855	QANTAS AIRWAYS LIMITED	361 MILPERRA ROAD, BANKSTOWN, NSW 2200	Surrendered	20/09/2000	Hazardous, Industrial or Group A Waste Generation or Storage	Premise Match	0m	On-site
7127	BOEING AEROSTRUCTU RES AUSTRALIA PTY LIMITED	361 MILPERRA ROAD, BANKSTOWN, NSW 2200	Surrendered	10/10/2000	Chemical production waste generation	Premise Match	0m	On-site
7127	BOEING AEROSTRUCTU RES AUSTRALIA PTY LIMITED	361 MILPERRA ROAD, BANKSTOWN, NSW 2200	Surrendered	10/10/2000	General chemicals storage	Premise Match	0m	On-site
7127	BOEING AEROSTRUCTU RES AUSTRALIA PTY LIMITED	361 MILPERRA ROAD, BANKSTOWN, NSW 2200	Surrendered	10/10/2000	Chemical storage waste generation	Premise Match	0m	On-site
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	North West
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	North West
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	North West
7498	BANKSTOWN CITY COUNCIL	-, Waterways throughout Bankstown City Council, BANKSTOWN	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	28m	North West
3085	HUHTAMAKI AUSTRALIA PTY LIMITED	406 MARION STREET, BANKSTOWN, NSW 2200	Surrendered	28/02/2000	Plastic resins production	Premise Match	836m	East


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
511	GOYEN CONTROLS CO PTY LTD	GOYEN CONTROLS COMPANY PTY LTD, 268 MILPERRA ROAD, MILPERRA	Surrendered	14/06/2000	Metal processing	Premise Match	919m	South
511	GOYEN CONTROLS CO PTY LTD	GOYEN CONTROLS COMPANY PTY LTD, 268 MILPERRA ROAD, MILPERRA	Surrendered	14/06/2000	Metal coating	Premise Match	919m	South

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1986, 1982, 1978, 1975, 1970, 1965, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	Aircraft Charter Services	Adams Aviation Pty. Ltd., Hangar 144, Bankstown Airport, Bankstown 2200	34188	1991	Area Match	0m
	Aircraft Maintenance & Repair	Aero Support Pty. Ltd., Hangar 271, Bankstown Airport, Bankstown 2200	34215	1991	Area Match	0m
	Aircraft Maintenance & Repair	Airag Services Pty. Ltd., Hangar 17, Bankstown Airport, Bankstown 2200	34217	1991	Area Match	0m
	Aircraft Maintenance & Repair	Chopper Shop, The, Hangar 271, Bankstown Airport, Bankstown 2200	34221	1991	Area Match	0m
	Aircraft Mfrs &/or Imps &/or Dists	Civil Flying Service Pty. Ltd., Hangar 299, Bankstown Airport, Bankstown 2200	34233	1991	Area Match	0m
	Aircraft Maintenance & Repair	Dasyl Avionics Pty. Ltd., Hangar 273, Bankstown Airport, Bankstown 2200	34222	1991	Area Match	0m
	Aircraft Component Parts Mfrs &/or Imps &/or Dists	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport 2200	34204	1991	Area Match	0m
	Aircraft Maintenance & Repair	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport, Bankstown 2200	34223	1991	Area Match	0m
	Aircraft Maintenance & Repair	Hawker Pacific, Hangar 330, Bankstown Airport, Bankstown 2200	66539	1991	Area Match	0m
	Aircraft Charter Services	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport, Bankstown 2200	34194	1991	Area Match	0m
	Aircraft Maintenance & Repair	P & T Aviation, Hangar 273, Rearwin Pl., Bankstown Airport 2200	34227	1991	Area Match	0m
	Aircraft Maintenance & Repair	Winrye Aviation Pty. Ltd., Hangar 506, Miles St., Bankstown 2200	34228	1991	Area Match	0m
	AIR CHARTER SERVICES.	Adams Aviation Pty. Ltd., Hangar 144, Bankstown Airport. 2200	1904	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Adams Aviation Pty. Ltd., Hangar 144, Bankstown Airport. 2200	2634	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aero Support Pty. Ltd., Hangar 271, Bankstown Airport. 2200	2613	1986	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS. &/OR IMPS. &/OR DISTS.	Airborne Accessories Pty. Ltd., Bankstown Airport 2200	2584	1986	Area Match	Om
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	2600	1986	Area Match	0m
	INSTRUMENT-AIRCRAFT- MFRS. &/OR IMPS. &/OR DISTS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	48184	1986	Area Match	Om
	RADIO TRANSMITTER MFRS.	Airborne Radio Services, Bankstown Airport, Bankstown. 2200	78831	1986	Area Match	0m
	INSTRUMENT-AIRCRAFT- MFRS. &/OR IMPS. &/OR DISTS.	Aviat Instrument Radio & Electrical Sales & Service, Hangar 480, Bankstown Airport, Bankstown. 2200	48186	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Bligh, Allan Aviation Pty. Ltd., Hanger 480, Bankstown Airport. 2200	2641	1986	Area Match	0m
	FLYING SCHOOLS.	Chieftain Aviation Pty. Ltd., Milperra Rd., Bankstown Airport. 2200	34092	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Chopper Shop, The, Hanger 271, Bankstown Airport. 2200	2617	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Civil Flying Service Pty Ltd., Hanger 299, Bankstown Airport. 2200	2643	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Dasyl Avionics Pty. Ltd., Hangar 273, Bankstown Airport. 2200	2618	1986	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS. &/OR IMPS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport. 2200	2590	1986	Area Match	0m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport. 2200	2603	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport. 2200	2619	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport. 2200	2644	1986	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Airport. 2200	28498	1986	Area Match	0m
	AIR CHARTER SERVICES.	Heli Aust. Pty. Ltd., Hanger 271, Bankstown Airport. 2200	1911	1986	Area Match	0m
	AIR CHARTER SERVICES.	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport. 2200	1916	1986	Area Match	0m
	FLYING SCHOOLS.	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport. 2200	34094	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	John Cameron Aviation, Hangar 16, Bankstown Airport. 2200	2623	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	John Cameron Aviation, Hangar 16, Bankstown Airport. 2200	2650	1986	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS. &/OR IMPS. &/OR DISTS.	Moorabbin Aircraft Spares Pty. Ltd., Bankstown Airport. 2200	2593	1986	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Moorabbin Aircraft Spares Pty. Ltd., Bankstown Airport. 2200	2606	1986	Area Match	0m
	ENGINEERS-AERONAUTICAL.	P. & T. Aviation Pty. Ltd., Bankstown Airport. 2200	28502	1986	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS. &/OR IMPS. &/OR DISTS.	Pacific Aviation, Hangar 14, Bankstown Airport. 2200	2594	1986	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Pacific Aviation, Hangar 14, Bankstown Airport. 2200	2609	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Pacific Aviation, Hangar 14, Bankstown Airport. 2200	2627	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Pacific Aviation, Hangar 14, Bankstown Airport. 2200	2652	1986	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Pacific Aviation, Hangar 14, Bankstown Airport. 2200	28503	1986	Area Match	0m
	AIR SERVICE OPERATORS.	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2563	1986	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2611	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2628	1986	Area Match	0m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2653	1986	Area Match	0m
	INSTRUMENT-AIRCRAFT- MFRS. &/OR IMPS. &/OR DISTS.	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	48192	1986	Area Match	0m
	FLYING SCHOOLS.	Rex Flight Centre, Hangar 400, Bankstown Airport. 2200	34099	1986	Area Match	0m
	AIR CHARTER SERVICES.	Rotor Work Pty. Ltd., Bankstown Airport, Bankstown. 2200	1925	1986	Area Match	0m
	CLUBS &/OR SPORTING BODIES.	Royal Aero Club of N.S.W., The, Hangar 15 & 41D, Bankstown Airport. 2200	18980	1986	Area Match	0m
	FLYING SCHOOLS.	Royal Aero Club of N.S.W., The, Hangar 15 & 41D, Bankstown Airport. 2200	34100	1986	Area Match	0m
	FLYING SCHOOLS.	Sydney Airways, Bankstown Airport, Bankstown. 2200	34102	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Walker, R Aviation, Bankstown Airport, Bankstown. 2200	2630	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Wilmor Accessories Pty Ltd., Hangar 131, Bankstown Airport. 2200	2631	1986	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Airport. 2200	28505	1986	Area Match	0m
	INSTRUMENT-AIRCRAFT- MFRS. &/OR IMPS. &/OR DISTS.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Airport. 2200	48195	1986	Area Match	0m

ap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT COMPONENT PARTS MFRS. &/OR IMPS. &/OR DISTS.	Wilmor Accessories Pty. Ltd., Hangar131, Bankstown Airport. 2200	2597	1986	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Wiltshire Engineering Co, Bankstown Airport. 2200	2632	1986	Area Match	0m
	ENGINEERS – GENERAL &/ OR MANUFACTURING &/ OR MECHANICAL.	Wiltshire Engineering Co., Bankstown Airport. 2200	30435	1986	Area Match	0m
	ENGINEERS – HYDRAULIC.	Wiltshire Engineering Co., Bankstown Airport. 2200	30579	1986	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Wiltshire Engineering Co., Bankstown Airport. 2200	28506	1986	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Adams Aviation Pty. Ltd., Hangar 144, Bankstown Airport. 2200.	1764	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Adams Aviation Pty. Ltd., Hangar 144, Bankstown Airport. 2200.	2307	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport 2200	1766	1982	Area Match	0m
	AGRICULTURAL SPRAY SERVICES.(A3120)	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport. 2200.	1676	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport. 2200.	2283	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Aero Fabricators Pty. Ltd., Hangar 120, Bankstown Airport. 2200.	2284	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Aero Support Pty. Ltd., Hangar 271, Bankstown Airport. 2200.	2285	1982	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS.&/OR DISTS. (A4440)	Airborne Accessories Pty. Ltd., Bankstown Airport 2200.	2268	1982	Area Match	0m
	INSTRUMENTS - AIRCRAFT SPECIALISTS. (12700)	Airborne Accessories Pty. Ltd., Bankstown Airport 2200.	42091	1982	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS. (A4290)	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200.	2253	1982	Area Match	0m
	RADIO TRANSMITTER MFRS. (R1400)	Airborne Radio Services, Bankstown Airport, Bankstown. 2200.	68382	1982	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS. (A4290)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	2254	1982	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS.&/OR DISTS. (A4440)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	2272	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	2287	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	2309	1982	Area Match	0m
	ENGINEERS-AERONAUTICAL (E5970)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	26662	1982	Area Match	0m
	INSTRUMENTS - AIRCRAFT SPECIALISTS. (I2700)	Aviat Instrument Radio & Electrical Sales & Service, Bankstown Airport, Bankstown. 2200.	42094	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	1770	1982	Area Match	0m
		Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	2257	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	2290	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	2312	1982	Area Match	0m
	ENGINEERS-AERONAUTICAL (E5970)	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	26664	1982	Area Match	0m
	FLYING SCHOOLS. (F4600)	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	31810	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Bramley, R. Aircraft Sales, Bankstown Airport. 2200.	2313	1982	Area Match	0m
	FLYING SCHOOLS. (F4600)	Chieftain Aviation Pty. Ltd., Milperra Rd., Bankstown Aerodrome.2200.	31811	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Chopper Shop, The, Hanger 271, Bankstown Airport. 2200.	2291	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Dais Electronics Pty. Ltd., Hangar 120, Bankstown Airport. 2200.	2292	1982	Area Match	0m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Dasyl Avionics Pty. Ltd., Hangar 12, Bankstown Airport. 2200.	2293	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Eagle Airways, Hangar 457, Bankstown Airport. 2200.	1773	1982	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS. (A4290)	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	2259	1982	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS.&/OR DISTS. (A4440)	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	2276	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	2294	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	2315	1982	Area Match	0m
	ENGINEERS-AERONAUTICAL (E5970)	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	26666	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Hawker De Havilland Australia Pty. Ltd., Bankstown Airport, Bankstown. 2200.	2317	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport. 2200.	1780	1982	Area Match	0m
	FLYING SCHOOLS. (F4600)	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport.2200.	31814	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	John Cameron Aviation, Hangar 16, Bankstown Airport. 2200.	2298	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	John Cameron Aviation, Hangar 16, Bankstown Airport. 2200.	2321	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Lambert, Bob, Hangar 3, Bankstown Airport. 2200.	2322	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Leasair Holdings Pty. Ltd., Hangar 114, Bankstown Airport. 2200.	1781	1982	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS. (A4290)	Moorabbin Aircraft Spares Pty. Ltd., Bankstown Airport. 2200.	2262	1982	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS.&/OR DISTS. (A4440)	Moorabbin Aircraft Spares Pty. Ltd., Bankstown Airport. 2200.	2277	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	R.A.V. Helicopters Pty. Ltd., Hangar 457, Bankstown Airport. 2200.	1783	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Rex Aviation Limited, Hangar 400, Bankstown Airport 2200.	2300	1982	Area Match	0m
	INSTRUMENTS - AIRCRAFT SPECIALISTS. (12700)	Rex Aviation Limited, Hangar 400, Bankstown Airport 2200.	42098	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200.	1784	1982	Area Match	0m
	AIR SERVICE OPERATORS. (A4080)	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200.	2238	1982	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS.&/OR DISTS. (A4440)	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200.	2279	1982	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200.	2324	1982	Area Match	0m
	FLYING SCHOOLS. (F4600)	Rex Flight Centre, Hangar 400, Bankstown Airport 2200.	31818	1982	Area Match	0m
	AIR CHARTER SERVICES. (A3270)	Rotor Work Pty. Ltd., Bankstown Airport, Bankstown. 2200.	1785	1982	Area Match	0m
	CLUBS &/OR SPORTING BODIES.(C5730)	Royal Aero Club of N.S.W., The, Hangar 15 & 41D, Bankstown Airport. 2200.	17308	1982	Area Match	0m
	FLYING SCHOOLS. (F4600)	Royal Aero Club of N.S.W., The, Hangar 15 & 41D, BankstownAirport. 2200.	31819	1982	Area Match	0m
	INSURANCE BROKERS. (I4250)	Stewart Wrightson N.S.W. Pty. Ltd., Bankstown Airport. 2200.	42677	1982	Area Match	0m
	FLYING SCHOOLS. (F4600)	Sydney Airways, Bankstown Airport, Bankstown. 2200.	31820	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Walker, R. Aviation, Bankstown Airport, Bankstown. 2200.	2302	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200.	2303	1982	Area Match	0m
	ENGINEERS-AERONAUTICAL (E5970)	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200.	26672	1982	Area Match	0m
	INSTRUMENTS - AIRCRAFT SPECIALISTS. (12700)	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200.	42101	1982	Area Match	0m

ap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT COMPONENT PART MFRS. (A4290)	Wilmor Pty. Ltd., Bankstown Aerodrome. 2200.	2267	1982	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Wiltshire Engineering Co., Bankstown Aerodrome. 2200.	2304	1982	Area Match	0m
	ENGINEERS - HYDRAULIC. (E7260)	Wiltshire Engineering Co., Bankstown Aerodrome. 2200.	28646	1982	Area Match	0m
	ENGINEERS-AERONAUTICAL (E5970)	Wiltshire Engineering Co., Bankstown Aerodrome. 2200.	26673	1982	Area Match	0m
	ENGINEERS-GENERAL &/OR MANUFACTURING &/OR MECHANICAL. (E7140)	Wiltshire Engineering Co., Bankstown Aerodrome. 2200.	28492	1982	Area Match	0m
	AIR CHARTER SERVICES.	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport. 2200	1753	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport. 2200	2171	1978	Area Match	0m
	AGRICULTURAL SPRAY SERVICES.	Aerial Apiculture Pty. Ltd, Hangar No. 17, Bankstown Airport. 2200	1681	1978	Area Match	0m
	INSTRUMENTS AIRCRAFT SPECIALISTS.	Airborne Accessories Pty. Ltd, Bankstown Airport. 2200	37424	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	2140	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	2156	1978	Area Match	0m
	RADIO TRANSMITTER MFRS.	Airborne Radio Services; Bankstown Airport., Bankstown. 2200	61175	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200	2142	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200	2159	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200	2172	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200	2194	1978	Area Match	0m
	ASSOCIATIONS-EMPLOYERS INDUSTRIAL &/OR PROFESSIONAL	Association of Commercial Flying Organisations of Aust., Bankstown Aerodrome. 2200	3431	1978	Area Match	0m
	AIR SERVICE OPERATORS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	2112	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	2143	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	2160	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	2173	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	2195	1978	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	23667	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Australia Airmotive Pty. Ltd., Hangar 299, Bankstown Airport. 2200	2196	1978	Area Match	0m
	AIRCRAFT RADIO EQUIPMENT SALES &/OR SERVICE.	Aviotronics Pty. Limited Hangar 120, Airport, Bankstown 2200	2212	1978	Area Match	0m
	AIR CHARTER SERVICES.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	1758	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	2146	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	2176	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	2199	1978	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	23669	1978	Area Match	0m
	FLYING SCHOOLS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	28794	1978	Area Match	0m
	FLYING SCHOOLS.	Chieftain Aviation Pty. Ltd., Milperra Rd., Bankstown Aerodrome. 2200	28795	1978	Area Match	0m

i	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	ENGINEERS-ELECTRONIC.	Dais Electronics Pty. Ltd., 120 Hanger, Bankstown Airport. 2200	24459	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200	2148	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200	2165	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200	2177	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200	2201	1978	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200	23671	1978	Area Match	0m
	ELECTROPLATERS.	Goninans Industrial Platers Pty. Ltd., Bankstown Airport, Milperra Rd, Bankstown. 2200	23354	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Hawker De Havilland Australia Pty. Ltd., Bankstown Airport, Bankstown. 2200	2202	1978	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Icarns Aviation Services Pty. Ltd, Hangar 457, Bankstown Airport. 2200	23674	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Icarns Aviation Services Pty. Ltd., Hangar 457, Bankstown Airport. 2200	2151	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Icarns Aviation Services Pty. Ltd., Hangar 457, Bankstown Airport. 2200	2166	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Icarus Aviation Services Pty. Ltd. Hangar 457. Bankstown Airport. 2200	2205	1978	Area Match	0m
	AIR CHARTER SERVICES.	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport. 2200	1764	1978	Area Match	0m
	FLYING SCHOOLS.	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport. 2200	28797	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Ivirus Aviation Services Pty. Ltd., Hangar 457, Bankstown Airport. 2200	2190	1978	Area Match	0m
	FLYING SCHOOLS.	Kingsford Flying Service Pty. Ltd., Hangar 274, Bankstown Airport. 2200	28798	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Icarns Aviation Services Pty. Ltd., Hangar 457, Bankstown Airport. 2200	2180	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Marshall Airways, Hangar 273, Bankstown Aerodrome. 2200	2181	1978	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Marshall Airways, Hangar 273, Bankstown Aerodrome. 2200	23678	1978	Area Match	0m
	AIR CHARTER SERVICES.	Marshall Airways, Hangar 273. Bankstown Aerodrome. 2200	1765	1978	Area Match	0m
	AIR SERVICE OPERATORS.	Marshall Airways. Hangar 273, Bankstown Aerodrome. 2200	2123	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Milton, John Pty. Ltd., Hangar 16, Bankstown Airport. 2200	2182	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Milton. John Pty. Ltd., Hangar 16, Bankstown Airport. 2200	2207	1978	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Rex Aviation Limited Hanger 400, Bankstown Airport. 2200	2192	1978	Area Match	0m
	AIR CHARTER SERVICES.	Rex Aviation Limited, Hangar 400 Bankstown Airport, 2200	1768	1978	Area Match	0m
	AIR SERVICE OPERATORS.	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2128	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2185	1978	Area Match	0m
		Rex Aviation Limited, Hangar 400, Bankstown Airport. 2200	2209	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Rex Aviation Limited. Hangar 400, Bankstown Airport. 2200	2167	1978	Area Match	0m
	INSTRUMENTS AIRCRAFT SPECIALISTS.	Rex Aviation Limited. Hangar 400, Bankstown Airport. 2200	37429	1978	Area Match	0m
	FLYING SCHOOLS.	Rex Flight Centre Hangar 400, Bankstown Airport. 2200	28791	1978	Area Match	0m
	FLYING SCHOOLS.	Rex Flight Centre, Hangar 400, Bankstown Airport. 2200	28800	1978	Area Match	0m
	AIR CHARTER SERVICES.	Rotor Work Pty. Ltd., Bankstown Airport, Bankstown. 2200	1769	1978	Area Match	0m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	FLYING SCHOOLS.	Royal Aero Club of N.S.W., The Hangar 15 & 41D, Bankstown Airport. 2200	28801	1978	Area Match	0m
	CLUBS &/OR SPORTING BODIES.	Royal Aero Club of N.S.W., The. Hangar 15 & 41D, Bankstown Airport. 2200	15646	1978	Area Match	0m
	INSURANCE BROKERS.	Stewart Wrightson N.S.W. Pty. Ltd., Bankstown Airport. 2200	38005	1978	Area Match	0m
	FLYING SCHOOLS.	Sydney Airways, Bankstown Airport, Bankstown. 2200	28802	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Walker, R. Aviation, Bankstown Airport, Bankstown. 2200	2187	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200	2188	1978	Area Match	0m
	ENGINEERS-AERONAUTICAL.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200	23681	1978	Area Match	0m
	INSTRUMENTS AIRCRAFT SPECIALISTS.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200	37432	1978	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Wilmor Pty. Ltd., Bankstown Aerodrome. 2200	2155	1978	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Wilson, Pty. Ltd., Bldg. 422, Bankstown Airport. 2200	2169	1978	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	2189	1978	Area Match	0m
	ENGINEERS GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	25544	1978	Area Match	Om
	ENGINEERS-AERONAUTICAL.	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	23682	1978	Area Match	0m
	ENGINEERS-HYDRAULIC.	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	25734	1978	Area Match	0m
	AIR CHARTER SERVICES.	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport. 2200	1516	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aerial Agriculture Pty. Ltd., Hangar No. 17, Bankstown Airport. 2200.	1968	1975	Area Match	0m
	AGRICULTURAL SPRAY SERVICES.	Aerial Agriculture Pty. Ltd., Hanger No. 17, Bankstown Airport. 2200	1446	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Aero Chrome Plate Ltd., Hangar 457, Bankstown Airport. 2200.	1944	1975	Area Match	0m
	AIRCRAFT ENGINE OVERHAULS.	Aerospace Industries (Aust) Pty Ltd. Hangar 457, Bankstown Airport. 2200	1941	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Aerospace Industries (Aust) Pty Ltd. Hangar 457, Bankstown Airport. 2200	1942	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aerospace Industries (Aust) Pty Ltd. Hangar 457, Bankstown Airport. 2200	1963	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Aerospace Industries (Aust) Pty Ltd. Hangar 457, Bankstown Airport. 2200	1992	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Aerospace Industries (Aust) Pty. Ltd., Hangar 457, Bankstown Airport. 2200	1945	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Aerospace Industries (Aust) Pty. Ltd., Hangar 457, Bankstown Airport. 2200	1997	1975	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Aerospace Industries (Aust.) Pty. Ltd., Hangar 457, Bankstown Airport. 2200	1924	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aerospece Industries (Aust) Pty. Ltd., Hanger 457, Bankstown Airport. 2200	1969	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Air Prop Services (N.S.W.) Pty. Ltd. Hanger 457, Bankstown Airport. 2200	1964	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Air Prop Services (N.S.W.) Pty. Ltd., Hangar 457, Bankstown Airport, Bankstown. 2200.	1970	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Airborne Accessories Pty. Ltd. Building 107, Airport, Bankstown. 2200.	1943	1975	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	1925	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	1947	1975	Area Match	0m
	INSTRUMENTS-AIRCRAFT SPECIALISTS.	Airborne Accessories Pty. Ltd., Bankstown Airport. 2200	44298	1975	Area Match	0m
	RADIO TRANSMITTER MFRS.	Airborne Radio Services., Bankstown Airport., Bankstown. 2200	71761	1975	Area Match	0m

ap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	ENGINEERS-AERONAUTICAL	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200	27357	1975	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	1927	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	1951	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome. 2200.	2001	1975	Area Match	0m
	ASSOCIATIONS-EMPLOYERS INDUSTRIAL &/OR PROFESSIONAL	Association of Commercial Flying Organisations of Aust., Bankstown Aerodrome. 2200.	3153	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200	27358	1975	Area Match	0m
	AIR SERVICE OPERATORS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200.	1891	1975	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200.	1928	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200.	1952	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200.	1973	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Austerserve Pty. Ltd., Hangar 271, Bankstown Aerodrome. 2200.	2002	1975	Area Match	0m
	AIRCRAFT RADIO EQUIPMENT SALES &/OR SERVICE	Aviotronics Pty. Limited Hangar 120, Airport, Bankstown 2200	2017	1975	Area Match	0m
	AIRCRAFT CHARTER- LEASING-SALES BROKERS.	Brabham Jack Aviation Pty. Ltd. Hanger 299, Bankstown Aerodrome. 2200	1921	1975	Area Match	0m
	AIR CHARTER SERVICES.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	1524	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	2006	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	27361	1975	Area Match	0m
	FLYING SCHOOLS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200	33338	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Brabham, J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	1976	1975	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Brabham. J. Aviation Pty. Ltd., Hangar 299, Bankstown Aerodrome. 2200.	1931	1975	Area Match	0m
	FLYING SCHOOLS.	Chieftain Aviation Pty. Ltd., Milperra Rd., Bankstown Aerodrome. 2200	33339	1975	Area Match	0m
	AIR CHARTER SERVICES.	Commercial Aviation Pty. Ltd., Hangar 400, Bankstown Airport.	1526	1975	Area Match	0m
	FLYING SCHOOLS.	Commercial Aviation Pty. Ltd., Hangar 400, Bankstown Airport. 2200	33341	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome	27362	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome.	1955	1975	Area Match	0m
	AIRCRAFT COMPONENT PART MFRS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	1934	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Bankstown Aerodrome. 2200.	1977	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276. Bankstown Aerodrome. 2200.	2008	1975	Area Match	0m
	AIR CHARTER SERVICES.	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport.	1529	1975	Area Match	0m
	FLYING SCHOOLS.	Illawarra Flying School Pty. Ltd., Hangar 276, Bankstown Airport. 2200	33342	1975	Area Match	0m
	AIR CHARTER SERVICES.	Islander Aircraft Sales Pty. Ltd., Bankstown Airport, Bankstown. 2200.	1530	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Islander Aircraft Sales Pty. Ltd., Bankstown Airport, Bankstown. 2200.	1980	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Islander Aircraft Sales Pty. Ltd., Bankstown Airport, Bankstown. 2200.	27366	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Jack Brabham Aviation Pty. Ltd. Hangar 299, Bankstown Aerodrome. 2200	1966	1975	Area Match	0m

i	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	FLYING SCHOOLS.	Kingsford Flying Service Pty. Ltd., Hangar 274, Bankstown Airport. 2200	33343	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Islander Aircraft Salea Pty. Ltd., Bankstown Airport, Bankstown. 2200.	2011	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Islander Aircraft Sales Pty. Ltd., Bankstown Airport, Bankstown. 2200.	1957	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Marshall Airways, Hangar 273, Bankstown Aerodrome. 2200	27371	1975	Area Match	0m
	AIR CHARTER SERVICES.	Marshall Airways, Hangar 273, Bankstown Aerodrome. 2200.	1531	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Marshall Airways, Hangar 273, Bankstown Aerodrome. 2200.	1981	1975	Area Match	0m
	AIR SERVICE OPERATORS.	Marshall Airways. Hangar 273, Bankstown Aerodrome. 2200.	1902	1975	Area Match	0m
	FLYING SCHOOLS.	McLean's Hying School Pty. Ltd., Hangar 114, Bankstown Airport. 2200	33344	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Milton, John Pty. Ltd., Hangar 16, Bankstown Airport. 2200.	1983	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Milton, John Pty. Ltd., Hangar 16. Bankstown Airport. 2200	2013	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Nationwide Air Services Pty. Ltd., Hangar 114, Bankstown Airport. 2200.	1986	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Navair Pty. Ltd. Charter Hangar 120, Bankstown Airport. 2200	1995	1975	Area Match	0m
	AIR CHARTER SERVICES.	Navair Pty. Ltd. Charter, Hangar 120, Bankstown Airport. 2200	1514	1975	Area Match	0m
	CONCRETE CONTRACTORS- CONSTRUCTIONAL	Rex Aviation Ltd., Hangar 400, Bankstown Airport. 2200	18378	1975	Area Match	0m
	INSTRUMENTS-AIRCRAFT SPECIALISTS.	Rex Aviation Ltd., Hangar 400, Bankstown Airport. 2200	44304	1975	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Rex Aviation Ltd., Hangar 400, Bankstown Airport. 2200.	1960	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Rex Aviation Ltd., Hangar 400, Bankstown Airport. 2200.	1988	1975	Area Match	0m
	AIR SERVICE BOOKING AGENTS.	Rex Aviation Sale (N.S.W.) Pty. Ltd., Hangar 400, Bankstown Airport 2200	1870	1975	Area Match	0m
	AIR SERVICE OPERATORS.	Rex Aviation Sales (N.S.W.) Pty. Ltd., Hangar 400, Bankstown Airport. 2200	1911	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Rex Aviation Sales (N.S.W.) Pty. Ltd., Hanger 400, Bankstown Airport. 2200	27372	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.		1996	1975	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	•	2016	1975	Area Match	0m
	FLYING SCHOOLS.	Rex Flying School Commercial Aviation Hangar 400, Bankstown Airport. 2200	33335	1975	Area Match	0m
	FLYING SCHOOLS.	Rex Flying School Commercial Aviation, Hangar 400. Bankstown Airport. 2200	33347	1975	Area Match	0m
	CLUBS & /OR SPORTING BODIES	Royal Aero Club of N.S.W. (The), Hangar 14 & 15 Bankstown Airport. 2200	18117	1975	Area Match	0m
	FLYING SCHOOLS.	Royal Aero Club of N.S.W. (The), Hangar 14 & 15, Bankstown Airport. 2200.	33348	1975	Area Match	0m
	INSURANCE BROKERS.	Stewart Smith-FBL Aviation Pty. Ltd., Bankstown Airport. 2200	44922	1975	Area Match	0m
	FLYING SCHOOLS.	Sydney Airways, Bankstown Airport, Bankstown. 2200.	33349	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Walker, R. Aviation, Bankstown Airport, Bankstown. 2200.	1989	1975	Area Match	0m
	ENGINEERS-AERONAUTICAL	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200	27374	1975	Area Match	0m
	INSTRUMENTS-AIRCRAFT SPECIALISTS.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200	44308	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome. 2200.	1990	1975	Area Match	0m
		Wilmor Pty. Ltd., Bankstown Aerodrome. 2200.	1940	1975	Area Match	0m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Wilson, I. A. Ltd., Bldg. 422, Bankstown Airport. 2200.	1962	1975	Area Match	0m
	ENGINEERS - GENERAL &/OR MANUFACTURING &/OR MECHANICAL	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	29512	1975	Area Match	0m
	ENGINEERS-AGRICULTURAL	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	27375	1975	Area Match	0m
	ENGINEERS-HYDRAULIC.	Wiltshire Engineering Co., Bankstown Aerodrome. 2200	29714	1975	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Wiltshire Engineering Co., Bankstown Aerodrome. 2200.	1991	1975	Area Match	0m
	AGRICULTURAL SPRAYING SERVICES(A235)	Aerial Agricultural Pty. Ltd., Hangar 17, Aerodrome, Bankstown	260665	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Aerial Agricultural Pty. Ltd., Hangar 17, Aerodrome.Bankstown	261101	1970	Area Match	0m
	AIR CHARTER SERVICES (A236)	Aerial Agriculture Pty. Ltd., Hangar 17, Aerodrome, Bankstown	260693	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Aero Engine Services (Aust.) Pty. Ltd., Hangar 457, Bankstown Airport, 2200	261052	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A290)	Aero Engine Services (Aust.) Pty. Ltd., Hangar 457, Bankstown Airport, 2200	261123	1970	Area Match	0m
	AIRCRAFT ELECTRICAL EQUIPMENT SALES & SERVICE	AIRBORNE ACCESSORIES PTY LTD, BUILDING 107, AIRPORT, BANKSTOWN, 2200	261076	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Airborne Accessories Pty. Ltd., Bankstown Airport, Bankstown, 2200	261053	1970	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Airborne Accessories Pty. Ltd., Bankstown Airport, Bankstown, 2200	261081	1970	Area Match	0m
	INSTRUMENTS-AIRCRAFT- SPECIALISTS (I370)	Airborne Accessories Pty. Ltd., Bankstown Airport., Bankstown, 2200	319452	1970	Area Match	0m
	RADIO TRANSMITTER MFRS. (R103)	Airborne Radio Services., Bankstown Airport., Bankstown	354664	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome	261055	1970	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome	261082	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome	261102	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A290)	Ansett General Aviation Pty. Ltd., Hangar 14, Bankstown Aerodrome	261124	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Ansett General Aviation Pty. Ltd., Hangar 14., Bankstown Aerodrome	297284	1970	Area Match	0m
	ASSOCIATIONS - EMPLOYERS', INDUSTRIAL & PROFESSIONAL	Association of Commercial Flying Organisations of Aust., Bankstown Aerodrome, Bankstown	263607	1970	Area Match	0m
	AIR SERVICES OPERATORS (A265)	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	260988	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	261057	1970	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	261084	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	261103	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A290)	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	261125	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Austerserve Pty. Ltd., Hangar 271, Aerodrome., Bankstown	297285	1970	Area Match	0m
	AIRCRAFT RADIO EQUIPMENT-SALES & SERVICE	AVIOTRONICS PTY LIMITED, HANGAR 120, AIRPORT, BANKSTOWN. 2200	261144	1970	Area Match	0m
	RADIO &/OR TELEVISION SALES & SERVICEMEN (R090)	Aviotronics Pty. Ltd., Hangar 120., Bankstown Aerodrome, BANKSTOWN	354172	1970	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Avmar Pty Limited, Bldg 422, Bankstown Airport	261087	1970	Area Match	0m
	FLYING SCHOOLS (F395)	Chieften Aviation Pty. Ltd., Milperra Rd., Bankstown Aerodrome	304738	1970	Area Match	0m
	AIR CHARTER SERVICES (A236)	Commercial Aviation Pty. Ltd., Hangar 400, Bankstown Airport	260698	1970	Area Match	0m

p Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	FLYING SCHOOLS (F395)	Commercial Aviation Pty. Ltd., Hangar 400., Bankstown Airport	304739	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Fawcett Aviation Pty. Ltd., Hangar 276 Airport, Bnkstwn	297289	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	261062	1970	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	261090	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	261107	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A290)	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown.	261133	1970	Area Match	0m
	AIR CHARTER SERVICES (A236)	Illawarra Flying School Pty. Ltd., Hangar 276, Airport, Bankstown	260702	1970	Area Match	0m
	FLYING SCHOOLS (F395)	illawarra Flying School Pty. Ltd., Hangar 276., Airport, Bankstown	304740	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Jamieson & Walker Pty. Ltd., Airport, Bankstown	261110	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Jamieson & Walker., Hangar 276, Airfield., Bankstown	297292	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Kingsford Flying Service Pty. Ltd., Hangar 274, Bankstown Airport	261066	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Kingsford Flying Service Pty. Ltd., Hangar 274, Bankstown Airport	261111	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Kingsford Flying Service Pty. Ltd., Hangar 274, Bankstown Airport	261116	1970	Area Match	0m
	, ,	Kingsford Flying Service Pty. Ltd., Hangar 274, Bankstown Airport	261138	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Kingsford Flying Service Pty. Ltd., Hangar 274., Bankstown Airport	297293	1970	Area Match	0m
	FLYING SCHOOLS (F395)	Kingsford Flying Service Pty. Ltd., Hangar 274., Bankstown Airport.	304741	1970	Area Match	0m
	AIR SERVICES OPERATORS (A265)	Kingsford Smith Flying Service Pty. Limited, Hangar 274, Aerodrome, Bankstown	260999	1970	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Kingsford Smith Flying Services Pty. Ltd., Hanger 274 Bankstown Aerodrome	261093	1970	Area Match	0m
	AIR CHARTER SERVICES (A236)	Kingsford-Smith Flying Service Pty. Ltd., Hangar 274. Bankstown Aerodrome	260704	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Marshall Airways, Hangar 273, Aerodrome, Bankstown	261112	1970	Area Match	0m
	AIR CHARTER SERVICES (A236)	Marshall Airways, Hangar 273, Bankstown Aerodrome	260705	1970	Area Match	0m
	AIR SERVICES OPERATORS (A265)	Marshall Airways, Hangar 273, Bankstown Aerodrome.	261001	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL	Marshall Airways., Hangar 273, Aerodrome., Bankstown.	297296	1970	Area Match	0m
	(E480) AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Milton, John Pty. Ltd., Hangar 16, Bankstown Aerodrome	261114	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Milton, John Pty. Ltd., Hangar 16, Bankstown Aerodrome	261141	1970	Area Match	0m
	(A290) AIR CHARTER SERVICES	Navair Pty. Ltd., Hangar 120, Airport, Bankstown	260707	1970	Area Match	0m
	(A236) AIRCRAFT MAINTENANCE SPECIALISTS	Navair Pty. Ltd., Hangar 120, Airport, Bankstown	656710	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Navair Pty. Ltd., Hangar 120, Airport, Bankstown	261142	1970	Area Match	0m
	(A290) PHOTOGRAPHERS-AERIAL	Navair Pty. Ltd., Hangar 120, Airport., Bankstown	347807	1970	Area Match	0m
	(P264) FLYING SCHOOLS (F395)	Navair Pty. Ltd., Hangar 120., Airport, Bankstown	304742	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Ray & Larkin Pty. Ltd., Hangar 299., Bankstown Aerodrome	297297	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Ray & Larkin Pty. Ltd., Hangar, 299, Aerodrome, Bankstown	261117	1970	Area Match	0m
	AIR CHARTER SERVICES (A236)	Rex Air Charter, Hangar 400, Bankstown Airport.	260708	1970	Area Match	0m

p Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Rex Aviation Ltd, Hangar 400, Aerodrome, Bankstown	261098	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Rex Aviation Ltd, Hangar 400, Aerodrome, Bankstown	261118	1970	Area Match	0m
	INSTRUMENTS-AIRCRAFT- SPECIALISTS (I370)	Rex Aviation Ltd., Hangar 400, Aerodrome., Bankstown	319462	1970	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS. (A290)	Rex Aviation Sales (N.S.W.) Pty. Ltd., Hangar 400, Aerodrome, Bankstown	261143	1970	Area Match	0m
	AIR SERVICES BOOKING AGENTS (A260)	Rex Aviation Sales (N.S.W.) Pty. Ltd., Hangar 400, Bankstown Aerodrome	260961	1970	Area Match	0m
	AIR SERVICES OPERATORS (A265)	Rex Aviation Sales (N.S.W.) Pty. Ltd., Hangar 400, Bankstown Aerodrome	261007	1970	Area Match	0m
	FLYING SCHOOLS (F395)	Rex Flying School Commercial Aviation., Hangar 400., Bankstown Airport.	304743	1970	Area Match	0m
	CLUBS & SPORTING BODIES (C487)	Royal Aero Club of N. S. W (The)., Hangars 14 & 15, Airport., Bankstown	284627	1970	Area Match	0m
	FLYING SCHOOLS (F395)	Royal Aero Club of N.S.W. (The)., Hangars 14., Airport, Bankstown	304744	1970	Area Match	0m
	FLYING SCHOOLS	Royal Aero Club of N.S.W. (The)., Hangars 15., Airport, Bankstown	656990	1970	Area Match	0m
	CLUBS & SPORTING BODIES (C487)	Truscott Club for Aeronauts (The)., Aerodrome., Bankstown	284719	1970	Area Match	0m
	ASSOCIATIONS & SOCIETIES (A612)	Ultra-Light Aircraft Association of Australia., Bankstown Airport.,	263231	1970	Area Match	0m
	INSTRUMENTS-AIRCRAFT- SPECIALISTS (I370)	Wilmor Accessories Pty. Ltd., Hangar 131, Aerodrome., Bankstown	319466	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Wilmor Accessories Pty. Ltd., Hangar 131, Bankstown Aerodrome	261120	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Wilmor Accessories Pty. Ltd., Hangar 131., Bankstown Aerodrome	297299	1970	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Wilmor Pty. Ltd., Bankstown Aerodrome, Bankstown	261075	1970	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Wiltshire Engineering Co, Bankstown Aerodrome, Bankstown	261121	1970	Area Match	0m
	ENGINEERS-AERONAUTICAL (E480)	Wiltshire Engineering Co., Bankstown Aerodrome., Bankstown	297300	1970	Area Match	0m
	ENGINEERS-GENERAL &/OR MFRG.&/OR MECHANICAL (E615)	Wiltshire Engineering Co., Bankstown Aerodrome., Bankstown	299792	1970	Area Match	0m
	ENGINEERS-HYDRAULIC (E645)	Wiltshire Engineering Co., Bankstown Aerodrome., Bankstown	300033	1970	Area Match	0m
	Air Charter Services	Aerial Agriculture Pty. Ltd., Hangar No, 17 Aerodrome, Bankstown	45559	1965	Area Match	0m
	Agricultural Spraying Services	Aerial Agriculture Pty. Ltd., Hangar No. 17, Aerodrome, Bankstown	45556	1965	Area Match	0m
	Aircraft Design and Modification	Aero Structures, Hangar 120, Bankstown Airport	45855	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Aero Structures., Hangar 120, Bankstown Airport	45862	1965	Area Match	0m
	Aircraft Mfrs. &/or Dists.	Aeronautical Services Pty. Ltd., Hangar 131, Bankstown Airport	45906	1965	Area Match	0m
	Aircraft Component Parts Mfrs.	Aeroquipment of Aust, Building 411, Bankstown Aerodrome	45835	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Aeroquipment of Aust, Building 411, Bankstown Aerodrome	45861	1965	Area Match	0m
	Aircraft Maintenance Specialists	Aerotech Pty. Ltd., Hangar 120, Bankstown Airport	45888	1965	Area Match	0m
	Instruments - Aircraft - Specialists	Aircraft Instrument Service Pty. Ltd., Hangar 299, Bankstown	103578	1965	Area Match	0m
	Aircraft Radio Specialists	Airpath Communication Service, Building 411, Bankstown Airport	45925	1965	Area Match	0m
	Instrument Repairers	Airpath Instrument & Electrical Co., Bldg. 411, Airport, Bankstown	103547	1965	Area Match	0m
	Instruments - Industrial - Mfrs. &/or Distributors	Airpath Instrument & Electrical Co., Bldg. 411, Airport, Bankstown	103659	1965	Area Match	0m
	Instruments - Aircraft - Specialists	Airpath Instrument & Electrical Co., Building 411, Airport, Bankstown	103579	1965	Area Match	0m

ld	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	Aircraft Mfrs. &/or Dists.	Allied Aviation Pty, Ltd., Building 411, Airport, Bankstown	45908	1965	Area Match	0m
	Air Services Operators	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	45807	1965	Area Match	0m
	Aircraft Component Parts Mfrs.	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	45836	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	45864	1965	Area Match	0m
	Aircraft Maintenance Specialists	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	45889	1965	Area Match	0m
	Aircraft Mfrs. &/or Dists.	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	45909	1965	Area Match	0m
	Engineers - Aeronautical	Austerserve Pty. Ltd., Hangar 271, Aerodrome, Bankstown	80602	1965	Area Match	0m
	Tube Benders	Aviation Welding Service, Hangar 299, Bankstown	154203	1965	Area Match	0m
	Welders - Electric &/or Oxy	Aviation Welding Service., Hangar 299 Bankstown	156240	1965	Area Match	0m
	Aircraft Maintenance Specialists	Aviation Welding Service., Hangar 299, Bankstown	45890	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Avmar Pty. Limited, Bldg. 422, Bankstown Airport	45866	1965	Area Match	0m
	Aircraft Brokers & Consultants	Central Aircrafte Exchange, Bankstown Airport	45831	1965	Area Match	0m
	Aircraft Component Parts Mfrs.	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	45838	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	45872	1965	Area Match	0m
	Aircraft Maintenance Specialists	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	45892	1965	Area Match	0m
	Aircraft Mfrs. &/or Dists.	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome Bankstown	45916	1965	Area Match	0m
	Engineers - Aeronautical	Fawcett Aviation Pty. Ltd., Hangar 276, Airport, Bankstown	80607	1965	Area Match	0m
	Air Charter Services	Illawarra Flying School Pty. Ltd., Hangar 276, Airport, Bankstown	45561	1965	Area Match	0m
	Flying Schools	Illawarra Flying School Pty. Ltd., Hangar 276, Airport, Bankstown	88135	1965	Area Match	0m
	Air Charter Services	James Air Charter Pty. Ltd., Bankstown Airport	45562	1965	Area Match	0m
	Air Services Operators	James Air Charter Pty. Ltd., Bankstown Airport	45817	1965	Area Match	0m
	Aircraft Maintenance Specialists	James Air Charter Pty. Ltd., Bankstown Airport	45895	1965	Area Match	0m
	Engineers - Aeronautical	James Air Charter Pty. Ltd., Bankstown Airport, Bankstown	80608	1965	Area Match	0m
	Aircraft Maintenance Specialists	Jamieson & Walker., Building 62, Airport, Bankstown	45896	1965	Area Match	0m
	Engineers - Aeronautical	Jamieson & Walker., Hangar 276, Airfield, Bankstown	80609	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Kingsford Smith Aviation Service Pty. Limited, Hangar 114, Aerodrome, Bankstown	45875	1965	Area Match	0m
	Aircraft Maintenance Specialists	Kingsford Smith Aviation Service Pty. Limited, Hangar 114, Aerodrome, Bankstown	45897	1965	Area Match	0m
	Aircraft Mfrs. &/or Dists.	Kingsford Smith Aviation Service Pty. Limited, Hangar 114, Aerodrome, Bankstown	45920	1965	Area Match	0m
	Air Charter Services	Kingsford Smith Aviation Service Pty. Ltd., Hangar 114, Bankstown Aerodrome	45563	1965	Area Match	0m
	Air Services Operators	Kingsford Smith Flying Service Pty. Limited, Hangar 274, Aerodrome, Bankstown	45819	1965	Area Match	0m
	Flying Schools	Kingsford Smith Flying Service Pty. Ltd., Hangar 274 Bankstown Aerodrome	88136	1965	Area Match	0m
	Air Charter Services	Kingsford Smith Flying Service Pty. Ltd., Hangar 274, Bankstown Aerodrome	45564	1965	Area Match	0m
	Aircraft Maintenance Specialists	Marshall Airways., Hangar 273, Aerodrome, Bankstown	45898	1965	Area Match	0m
	Engineers - Aeronautical	Marshall Airways., Hangar 273, Aerodrome, Bankstown	80612	1965	Area Match	0m

	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	Air Charter Services	Marshall Airways., Hangar 273, Bankstown Aerodrome	45565	1965	Area Match	0m
	Air Services Operators	Marshall Airways., Hangar 273, Bankstown Aerodrome	45823	1965	Area Match	0m
	Photographers - Aerial	Navair Pty Ltd., Hangar 120., Airport Bankstown	132260	1965	Area Match	0m
	ACCOUNTANTS & AUDITORS	Navair Pty. Ltd., Hangar 120, Airport, Bankstown	44016	1965	Area Match	0m
	Flying Schools	Navair Pty. Ltd., Hangar 120, Airport, Bankstown	88137	1965	Area Match	0m
	Engineers - Aeronautical	Parkes Aviation Co., Hangar 131, Bankstown Airport	80613	1965	Area Match	0m
Ī	Aircraft Component Parts Mfrs.	Parkes Aviation Company., Hangar 131, Bankstown Airport	45846	1965	Area Match	0m
	Aircraft Maintenance Specialists	Parkes Aviation Company., Hangar 131, Bankstown Airport	45899	1965	Area Match	0m
ľ	Aircraft Component Parts Mfrs.	Piper Aircraft Aust. Pty. Ltd., Hangar 14, Bankstown	45847	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Piper Aircraft Aust. Pty. Ltd., Hangar 14, Bankstown	45878	1965	Area Match	0m
ľ	Aircraft Maintenance Specialists	Piper Aircraft Aust. Pty. Ltd., Hangar 14, Bankstown	45900	1965	Area Match	0m
	Aircraft Mfrs. &/or Dists.	Piper Aircraft Aust. Pty. Ltd., Hangar 14, Bankstown	45921	1965	Area Match	0m
ľ	Engineers - Aeronautical	Piper Aircraft Aust. Pty. Ltd., Hangar 14, Bankstown	80614	1965	Area Match	0m
	Engineers - Aeronautical	Ray & Larkin Pty. Ltd., Hangar 299, Bankstown Aerodrome	80616	1965	Area Match	0m
ľ	Aircraft Maintenance Specialists	Ray & Larkin Pty. Ltd., Hangar, 299, Aerodrome, Bankstown	45901	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Rex Aviation Ltd., Hangar 400, Aerodrome, Bankstown	45880	1965	Area Match	0m
- 1	Aircraft Maintenance Specialists	Rex Aviation Ltd., Hangar 400, Aerodrome, Bankstown	45902	1965	Area Match	0m
	Aircraft Mfrs. &/or Dists.	Rex Aviation Ltd., Hangar 400, Aerodrome, Bankstown	45922	1965	Area Match	0m
	Instruments - Aircraft - Specialists	Rex Aviation Ltd., Hangar 400, Aerodrome, Bankstown	103589	1965	Area Match	0m
-	Flying Schools	Royal Aera Club of N.S.W. (The), Hangars 14 & 15, Airport, Bankstown	88138	1965	Area Match	0m
ľ	Clubs & Sporting Bodies	Royal Aero Club of N.S.W. (The), Hangars 14 & 15, Airport, Bankstown	69282	1965	Area Match	0m
	Aircraft Component Parts Mfrs.	Tasman International Pty. Ltd., Bankstown Airport, Bankstown	45849	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Tasman International Pty. Ltd., Bankstown Airport, Bankstown	45882	1965	Area Match	0m
-	Clubs & Sporting Bodies	Truscott Club for Aeronauts (The), Aerodrome, Bankstown	69364	1965	Area Match	0m
ľ	Aircraft Component Parts Mfrs.	Wilmor Pty. Ltd., Bankstown Aerodrome, Bankstown	45853	1965	Area Match	0m
	Aircraft Component Parts Mfrs.	Yeoman Aircraft Pty. Ltd., Hangar 16, Aerodrome, Bankstown	45854	1965	Area Match	0m
	Aircraft Equipment Mfrs. &/or Dists.	Yeoman Aircraft Pty. Ltd., Hangar 16, Aerodrome, Bankstown	45886	1965	Area Match	0m
-	Aircraft Mfrs. &/or Dists.	Yeoman Aircraft Pty. Ltd., Hangar 16, Aerodrome, Bankstown	45924	1965	Area Match	0m
ľ	Engineers - Aeronautical	Yeoman Aircraft Pty. Ltd., Hangar 16, Aerodrome,	80622	1965	Area Match	0m
	AGRICULTURAL SPRAYING	Bankstown Aerial Agriculture, Hangar 17, Aerodrome, Bankstown	267125	1961	Area Match	0m
- 1	SERVICES AIR CHARTER SERVICES	Aerial Agriculture, Hangar No. 17, Aerodrome Bankstown	267128	1961	Area Match	0m
	AIRCRAFT RADIO INSTALLATION MAINTENANCE & MFRS.	Aerial Communication Service Pty Ltd Hangar 271,	267567	1961	Area Match	0m
ľ	RADIO &/OR RADIOGRAM MFRS.	Aerial Communications Service Pty. Ltd., Hangar 271, Bankstown Aerodrome	363694	1961	Area Match	0m

p ld	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIRCRAFT MAINTENANCE SPECIALISTS	Aerial Communications Service, Hangar 271, Bankstown	267532	1961	Area Match	0m
	AIR SERVICES OPERATORS	Air Taxi Service of Aust., Airport, Bankstown	267451	1961	Area Match	0m
	INSTRUMENTS—AIRCRAFT- SPECIALISTS	Aircraft Instrument Service Pty. Ltd., Hangar 299, Bankstown	327227	1961	Area Match	0m
	WELDERS-ELECTRIC &/OR OXY	Avco Engineers Pty. Ltd., Hangar 280 Aerodrome, Bankstown	261879	1961	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS.	Avco Engineers Pty. Ltd., Hangar 280, Aerodrome Bankstown	267491	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Avco Engineers Pty. Ltd., Hangar 280, Aerodrome, Bankstown	267534	1961	Area Match	0m
	ENGINEERS-HYDRAULIC	Avco Engineers Pty. Ltd., Hangar 280, Bankstown	307433	1961	Area Match	0m
	ENGINEERS-GENERAL/MFRG./ MECHANICAL	Avco Engineers Pty. Ltd., Hangar 280., Bankstown	306159	1961	Area Match	0m
	ENGINEERS-INDUSTRIAL	Avco Engineers Pty. Ltd., Hangar 280., Bankstown	307471	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Aviation Welding Service, Hangar 299, Bankstown	267535	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Boehm, Hangar 274, Bankstown Aerodrome	267536	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	Bristol Aviation Services Pty. Ltd., Hangar 275, Airport, Bankstown	304600	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	Fairey Aviation Co. of (Australasia) Pty. Ltd., Aerodrome, Bankstown	304608	1961	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS	Fairey Aviation Co. of (Australasia) Pty. Ltd., Aerodrome., Bankstown	267518	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Fairey Aviation Co. of Australasia Pty. Ltd., Aerodrome, Bankstown	267539	1961	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Fairey Aviation Co. of Australasia Pty. Ltd., Aerodrome, Bankstown	267559	1961	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS.	Fairey Aviation Co. of Australasia Pty. Ltd., Aerodrome., Bankstown	267496	1961	Area Match	0m
	AIRCRAFT COMPONENT PARTS MFRS.	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome Bankstown	267497	1961	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	267519	1961	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Fawcett Aviation Pty. Ltd., Hangar 276, Aerodrome, Bankstown	267560	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	Fawcett Aviation Pty. Ltd., Hangar 276, Airport, Bnkstwn	304609	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Fawcett Aviation Pty. Ltd., Hangar276., Aerodrome Bankstown	267540	1961	Area Match	0m
	EXPORTERS	Graclin Import & Export Coy. Pty. Ltd., Hangar 14., Bankstown,	309166	1961	Area Match	0m
	FLYING SCHOOLS	Illawarra Flying School, Hangar 276 Airport, Bankstown	312362	1961	Area Match	0m
	AIR SERVICES OPERATORS	Interstate Airways, Airport, Bankstown	267468	1961	Area Match	0m
	AIR CHARTER SERVICES	James Aircraft Pty. Ltd., Hangar 271, Bankstown	267129	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	James Aircraft Pty. Ltd., Hangar 271, Bankstown	267541	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	James Aircraft Pty. Ltd., Hangar 271, Bankstown	304612	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Jamieson & Walker Hangar 276, Airfield, Bankstown	267542	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Jamieson & Walker, Hangar 276, Airfield, Bankstown	267543	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	Jamieson & Walker, Hanger 276 Airfield Bankstown	304613	1961	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS	Kingsford Smith Aviation Service Pty. Limited, Hangar 114, Aerodrome, Bankstown	267521	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Kingsford Smith Aviation Service Pty. Limited, Hangar 114, Aerodrome, Bankstown	267544	1961	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Kingsford Smith Aviation Service Pty. Limited, Hangar 114, Aerodrome, Bankstown	267562	1961	Area Match	0m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	ENGINEERS-AERONAUTICAL	Kingsford Smith Aviation Service Pty. Limited., Hangar 114, Aerodrome	304614	1961	Area Match	0m
	AIR SERVICES OPERATORS	Kingsford Smith Aviaton Service, Aerodrome, Bankstown	267470	1961	Area Match	0m
	AIR SERVICES OPERATORS	Kingsford Smith Flying Service Pty. Limited, Hangar 274, Aerodrome, Bankstown	267471	1961	Area Match	0m
	FLYING SCHOOLS	Kingsford Smith Flying Service Pty. Limited., Hangar 274, Aerodrome., Bankstown	312363	1961	Area Match	0m
	AIR SERVICES OPERATORS	Kingsford Smith Flying Services Pty Limited Hangar 274, Aerodrome, Bankstown	267472	1961	Area Match	0m
	FLYING SCHOOLS	Kingsford-Smith Flying Service Pty Limited., Hangar 274, Aerodrome., Bankstown	312364	1961	Area Match	0m
	AIR SERVICES OPERATORS	Marshall Airways, Hangar 273, Aerodrome, Bankstown	267473	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Marshall Airways, Hangar 273, Aerodrome, Bankstown	267545	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	Marshall Airways, Hangar 273, Aerodrome, Bankstown	304617	1961	Area Match	0m
	ENGINEERS-AERONAUTICAL	Ray & Larkin Pty. Ltd., Hangar 299, Aerodrome, Bankstown	304618	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Ray & Larkin Pty. Ltd., Hangar, 299, Aerodrome, Bankstown	267546	1961	Area Match	0m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS	Rex Aviation, Hangar 400, Aerodrome, Bankstown	267525	1961	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Rex Aviation, Hangar 400, Aerodrome, Bankstown	267547	1961	Area Match	0m
	AIRCRAFT MFRS. &/OR DISTS.	Rex Aviation, Hangar 400, Aerodrome, Bankstown	267563	1961	Area Match	0m
	CLUBS & SPORTS BODIES	Royal Aero Club of N.S.W. (The), Airport, Bankstown	291763	1961	Area Match	0m
	FLYING SCHOOLS	Royal Aero Club of N.S.W., Airport, Bankstown	312365	1961	Area Match	0m
	PHOTOGRAPHERS—AERIAL	Skyway Services Pty. Ltd., 17 Hangar, Bankstown Aerodrome	357538	1961	Area Match	0m
	CLUBS & SPORTS BODIES	Trincott Club for Aeronauts (The)., Aerodrome,	291823	1961	Area Match	0m
	AIR SERVICES OPERATORS	Airflite Pty. Ltd., Hangar 275, Aerodrome, Bankstown	1569	1950	Area Match	0m
	AIRCRAFT MAINTENANCE SPECIALISTS	Airflite Training Pty. Ltd., Hangar 275, Aerodrome, Bankstown (P.O. Box 4)	1631	1950	Area Match	0m
	ENGINEERS-AERONAUTICAL	Airflite Training Pty. Ltd., Hangar 275, Aerodrome, Bankstown, P.O. Box 4	39789	1950	Area Match	0m
	ENGINEERS-AERONAUTICAL	Clyde Engineering Co. Ltd, Aerodrome, Bankstown	39797	1950	Area Match	0m
	AIR SERVICES OPERATORS	Curtis Madsen Aircraft Pty. Ltd., Hangar 17, Aerodrome (Box 25), Bankstown	1584	1950	Area Match	0m
	ELECTRICAL ENGINEERS	Curtis, Madsen Aircraft Pty. Ltd (Aero), Hangar 17, .Aerodrome (Box 25), Bankstown	38060	1950	Area Match	0m
	ENGINEERS-AERONAUTICAL	Curtis, Madsen Aircraft Pty. Ltd., Hangar 17, Aerodrome (Box 25), Bankstown	39799	1950	Area Match	0m
	AIRCRAFT IMPORTERS' &/OR MANUFACTURERS REPRESENTATIVES	De Havilland Aircraft Pty. Ltd. Bankstown Aerodrome	1629	1950	Area Match	0m
	AIRCRAFT MANUFACTURERS & DISTRIBUTORS	De Havilland Aircraft Pty. Ltd. Bankstown Aerodrome	1638	1950	Area Match	0m
	EXPORTERS	Graclin Import and Export Coy. Pty. Ltd., Hangar 14, Bankstown Aerodrome	42913	1950	Area Match	0m
	AIR SERVICES OPERATORS	Kingsford Smith Aviation Service, Aerodrome, Bankstown	1590	1950	Area Match	0m
	FLYING SCHOOLS	Kingsford Smith Aviation Service, Bankstown Aerodrome	46435	1950	Area Match	0m
	AIR SERVICES OPERATORS	Marshall Airways, Aerodrome, Mascot Bankstown	1591	1950	Area Match	0m
	AIR SERVICES OPERATORS	Mashall, S. D., Aerodrome, Bankstown	1593	1950	Area Match	0m
	AIR SERVICES OPERATORS	Morris Air Service, Hangar 271, Aerodrome, Bankstown	1594	1950	Area Match	0m

p ld	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	AIR SERVICES OPERATORS	New England Airways, Aerodrome, Bankstown	1595	1950	Area Match	0m
	AIRCRAFT MANUFACTURERS & DISTRIBUTORS	New England Airways, Bankstown Aerodrome	1646	1950	Area Match	0m
	PHOTOGRAPHERS-AERIAL	Skyway Services Pty. Ltd., 17 Hangar, Bankstown Aerodrome	91712	1950	Area Match	0m
	CLUBS & SPORTS BODIES	Truscott Club for Aeronauts (The), Aerodrome, Bankstown	25452	1950	Area Match	0m
2	Aircraft Mfrs &/or Imps &/or Dists	Aeospatiale Helicopters, Bldg. 491, Avro St., Bankstown 2200	34230	1991	Road Match	26m
	Aircraft Component Parts Mfrs &/or Imps &/or Dists	Aero Supply, 497 Avro St., Bankstown Airport 2200	34201	1991	Road Match	26m
	Aircraft Equipment & Parts Mfrs &/or Dists	Aero Supply, 497 Avro St., Bankstown Airport 2200	34208	1991	Road Match	26m
	Aircraft Maintenance & Repair	Aviation & Marine Instrument Services Pty. Ltd., Avro St., Bankstown Airport 2200	34219	1991	Road Match	26m
	Aircraft Charter Services	Navair, Avro St., Bankstown 2200	34196	1991	Road Match	26m
	Aircraft Maintenance & Repair	Navair, Avro St., Bankstown 2200	34226	1991	Road Match	26m
	Instrument Aircraft Mfrs &/or Imps &/or Dists	Navitron Pty Ltd, Hangar., 484 Avro St., Bankstown. 2200	49142	1991	Road Match	26m
	Aircraft Equipment & Parts Mfrs &/or Dists	Navitron Pty. Ltd., Hangar 484, Avro St., Bankstown 2200	34212	1991	Road Match	26m
	AIRCRAFT COMPONENT PARTS MFRS. &/OR IMPS. &/OR DISTS.	Aero Supply, 497 Avro St., Bankstown Airport. 2200	2582	1986	Road Match	26m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Aero Supply, 497 Avro St., Bankstown Airport. 2200	2599	1986	Road Match	26m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Aero Supply, 497 Avro St., Bankstown Airport. 2200	2635	1986	Road Match	26m
	INSTRUMENT-MARINE-MFRS. &/OR IMPS. &/OR DISTS.	Aviation & Marine Instrument Services Pty. Ltd., Arvo St., Bankstown Airport. 2200	48326	1986	Road Match	26m
	INSTRUMENT-AIRCRAFT- MFRS. &/OR IMPS. &/OR DISTS.	Aviation & Marine Instrument Services Pty. Ltd., Avro St., Bankstown Airport. 2200	48187	1986	Road Match	26m
	AIR CHARTER SERVICES.	Navair Pty. Ltd., Avro St., Bankstown. 2200	1920	1986	Road Match	26m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Navair Pty. Ltd., Avro St., Bankstown. 2200	2625	1986	Road Match	26m
	AIRCRAFT MFRS &/OR IMPS &/OR DISTS	Navair Pty. Ltd., Avro St., Bankstown. 2200	2651	1986	Road Match	26m
	FLYING SCHOOLS.	Navair Pty. Ltd., Avro St., Bankstown. 2200	34096	1986	Road Match	26m
	PHOTOGRAPHERS - AERIAL.	Navair, Pty. Ltd., Avro St., Bankstown. 2200	72799	1986	Road Match	26m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS.	Navitron Pty. Ltd., Hangar 484, Avro St., Bankstown. 2200	2607	1986	Road Match	26m
	INSTRUMENT-AIRCRAFT- MFRS. &/OR IMPS. &/OR DISTS.	Navitron Pty. Ltd., Hangar 484, Avro St., Bankstown. 2200	48191	1986	Road Match	26m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Winrye Aviation Pty Ltd., Hanger 468. Avro St., Bankstown. 2200	2633	1986	Road Match	26m
	AIR CHARTER SERVICES. (A3270)	Advance Aviation Pty. Ltd., Hangar 120, Avro St., Bankstown. 2200.	1765	1982	Road Match	26m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Advance Aviation Pty. Ltd., Hangar 120, Avro St., Bankstown. 2200.	2282	1982	Road Match	26m
	AIR CHARTER SERVICES. (A3270)	Navair Pty. Ltd., Avro St., Bankstown. 2200.	1782	1982	Road Match	26m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Navair Pty. Ltd., Avro St., Bankstown. 2200.	2299	1982	Road Match	26m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Navair Pty. Ltd., Avro St., Bankstown. 2200.	2323	1982	Road Match	26m
	FLYING SCHOOLS. (F4600)	Navair Pty. Ltd., Avro St., Bankstown. 2200.	31815	1982	Road Match	26m
	PHOTOGRAPHERS - AERIAL. (P3440)	Navair Pty. Ltd., Avro St., Bankstown. 2200.	63454	1982	Road Match	26m
	AIRCRAFT EQUIPMENT MFRS.&/OR DISTS. (A4440)	Navitron Pty. Ltd., Hangar 484, Avro St., Bankstown. 2200.	2278	1982	Road Match	26m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
2	INSTRUMENTS - AIRCRAFT SPECIALISTS. (I2700)	Navitron Pty. Ltd., Hangar 484, Avro St., Bankstown. 2200.	42097	1982	Road Match	26m
	AIRCRAFT MFRS. &/OR DISTS. (A4590)	Venture Aircraft Sales Pty. Ltd., Hangar 468, Avro St., Bankstown. 2200.	2327	1982	Road Match	26m
	AIR CHARTER SERVICES.	Advance Aviation Pty. Ltd., Hanger 459, Avro St., Bankstown Airport. 2200	1752	1978	Road Match	26m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Advance Aviation Pty. Ltd., Hanger 459, Avro St., Bankstown Airport. 2200	2170	1978	Road Match	26m
	AIRCRAFT MFRS. &/OR DISTS.	Venture Aircraft Sales Pty. Ltd., Hangar 468, Avro St., Bankstown. 2200	2211	1978	Road Match	26m
	AIR CHARTER SERVICES.	Advanic Aviation Pty. Ltd., Hanger 459, Avro St., Bankstown Airport. 2200.	1515	1975	Road Match	26m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Advanic Aviation Pty. Ltd., Hanger 459, Avro St., Bankstown Airport. 2200.	1967	1975	Road Match	26m
3	AIR CHARTER SERVICES.	Le Claire Aviation, Kestrel PI., Bankstown Airport. 2200	1918	1986	Road Match	102m
4	Aircraft Charter Services	Australian Flying Training School, 62 Airport Ave., Bankstown Airport 2200	34189	1991	Road Match	124m
	FLYING SCHOOLS.	Precision Flight, 62 Airport Ave., Bankstown Airport. 2200	34098	1986	Road Match	124m
	FLYING SCHOOLS. (F4600)	Precision Flight, 62 Airport Ave., Bankstown Airport. 2200.	31817	1982	Road Match	124m
	FLYING SCHOOLS.	Bankstown Aviation College, Building 62, Airport Dr., Bankstown Airport. 2200	28793	1978	Road Match	124m
5	Aircraft Maintenance & Repair	Aviation Welding Service, Stinson Cr., Bankstown Airport 2200	34220	1991	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Air Fab, Building 455, Stinson Cr., Bankstown Airport. 2200	2614	1986	Road Match	129m
	TUBE BENDERS.	Aviation Welding Service, Stinson Cr., Bankstown Airport. 2000	95935	1986	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aviation Welding Service, Stinson Cr., Bankstown Airport. 2200	2616	1986	Road Match	129m
	WELDERS - ELECTRIC &/OR OXY.	Aviation Welding Service, Stinson Crt., Bankstown Airport. 2200	98547	1986	Road Match	129m
	ASSOCIATIONS-EMPLOYERS- INDUSTRIAL &/OR PROFESSIONAL.	General Aviation Association, Stinson Cr., Bankstown Airport. 2200	4111	1986	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS. (A4560)	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200.	2289	1982	Road Match	129m
	TUBE BENDERS. (T7975)	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200.	82340	1982	Road Match	129m
	WELDERS - ELECTRIC &/OR OXY.(W3160)	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200.	84055	1982	Road Match	129m
	ASSOCIATIONS - EMPLOYERS -INDUSTRIAL &/OR PROFESSIONAL. (A8100)	General Aviation Association, Stinson Cr., Bankstown Airport. 2200.	3672	1982	Road Match	129m
	TUBE BENDERS.	Aviation Welding Service, Stinson Cr, Bankstown Aerodrome. 2200	72622	1978	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200	2175	1978	Road Match	129m
	WELDERS-ELECTRIC &/OR OXY.	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200	74121	1978	Road Match	129m
	ASSOCIATIONS-EMPLOYERS INDUSTRIAL &/OR PROFESSIONAL	General Aviation Association, Stinson Cr., Bankstown Airport. 2200	3487	1978	Road Match	129m
	AIR CHARTER SERVICES.	Navair Pty. Ltd. Charter Stinson Ave., Hangar 120, Bankstown Airport 2200	1751	1978	Road Match	129m
	AIRCRAFT MFRS. &/OR DISTS.	Navair Pty. Ltd. Charter Stinson Ave., Hangar 120, Bankstown Airport. 2200	2191	1978	Road Match	129m
	AIR CHARTER SERVICES.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	1767	1978	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	2184	1978	Road Match	129m
	AIRCRAFT MFRS. &/OR DISTS.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	2208	1978	Road Match	129m
	FLYING SCHOOLS.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	28799	1978	Road Match	129m

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
5	PHOTOGRAPHERS-AERIAL	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	56512	1978	Road Match	129m
	TUBE BENDERS.	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200	85295	1975	Road Match	129m
	WELDERS., Electric &/OR OXY.	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200	86775	1975	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Aviation Welding Service, Stinson Cr., Bankstown Aerodrome. 2200.	1975	1975	Road Match	129m
	ASSOCIATIONS-EMPLOYERS INDUSTRIAL &/OR PROFESSIONAL	General Aviation Association, Stinson Cr., Bankstown Airport. 2200	3213	1975	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	1987	1975	Road Match	129m
	AIRCRAFT MFRS. &/OR DISTS.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	2015	1975	Road Match	129m
	FLYING SCHOOLS.	Navair Pty. Ltd., Stinson Cr., Bankstown Airport. 2200	33346	1975	Road Match	129m
	PHOTOGRAPHERS-AERIAL	Nevair Pty. Ltd., Stinson Cr., Bankstown Airport 2200	66592	1975	Road Match	129m
	AIRCRAFT EQUIPMENT MFRS. &/OR DISTS. (A280)	Armstrong Airwork Pty Ltd, Stinson Cres., Bankstown Airport	261083	1970	Road Match	129m
	INSTRUMENTS-AIRCRAFT- SPECIALISTS (1370)	Armstrong Airwork Pty. Ltd., Stinson Cr., Bankstown Airport	319454	1970	Road Match	129m
	AIRCRAFT COMPONENT PARTS MFRS (A270)	Armstrong Airwork Pty. Ltd., Stinson Cres, Bankstown Airport	261056	1970	Road Match	129m
	AIRCRAFT MAINTENANCE SPECIALISTS (A285)	Aviation Welding Service, Stinson Cres, Bankstown Aerodrome	261105	1970	Road Match	129m
	WELDERS-ELECTRIC &/OR OXY	Aviation Welding Service, Stinson Cres, Bankstown Aerodrome	373449	1970	Road Match	129m
	TUBE BENDERS (T695)	Aviation Welding Service, Stinson Cres., Bankstown Aerodrome	371399	1970	Road Match	129m

Historical Business Directories

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Dry Cleaners, Motor Garages & Service Stations 1948-1993 Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

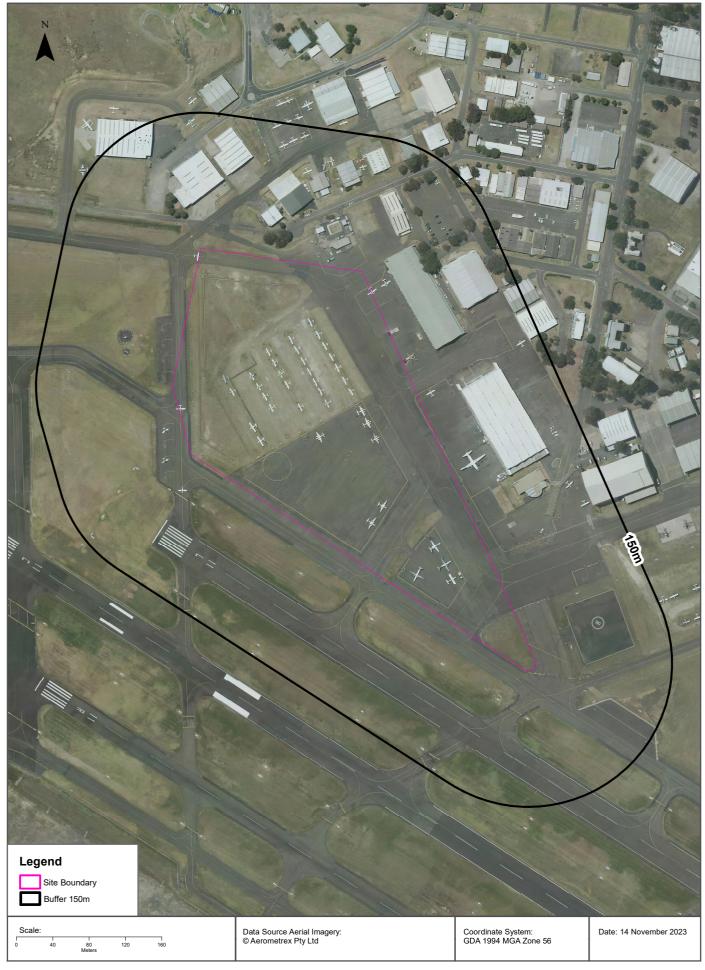
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

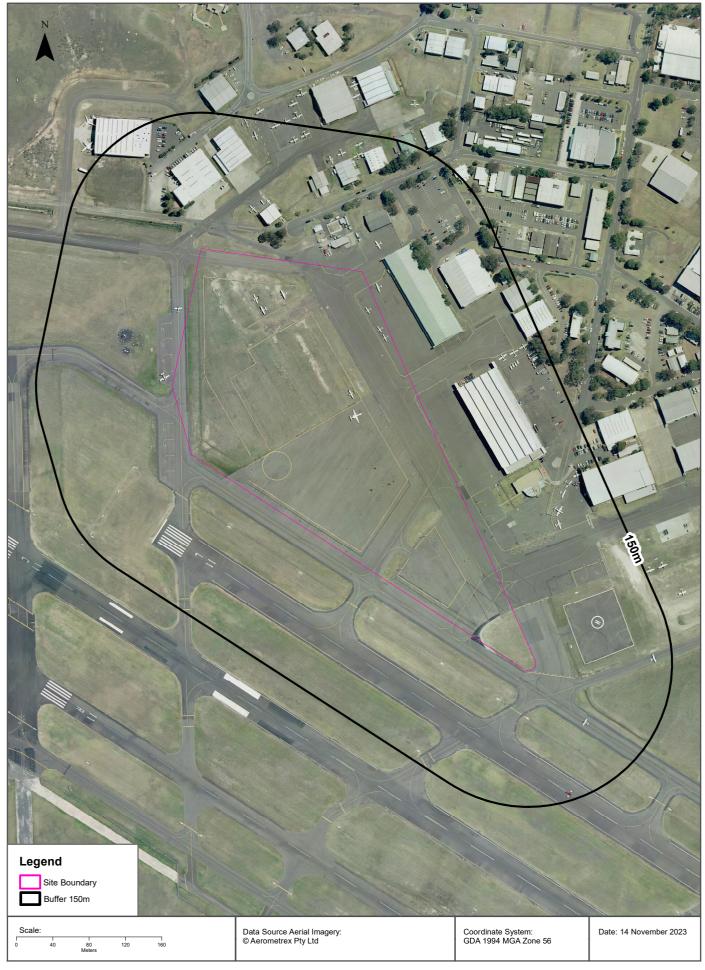
Dry Cleaners, Motor Garages & Service Stations 1948-1993 Road or Area Matches

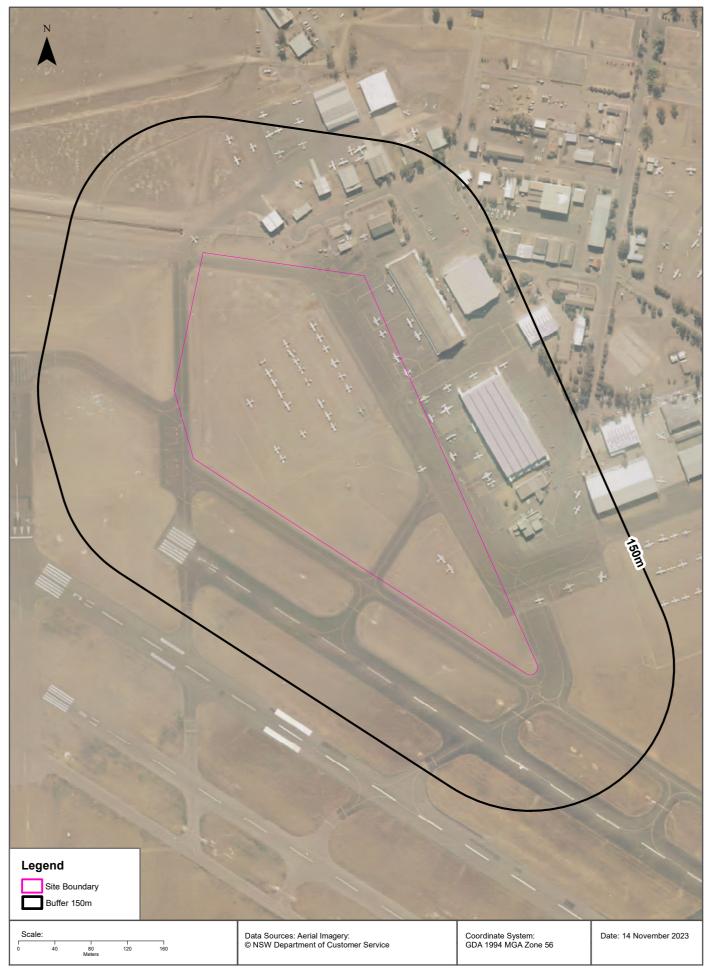
Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

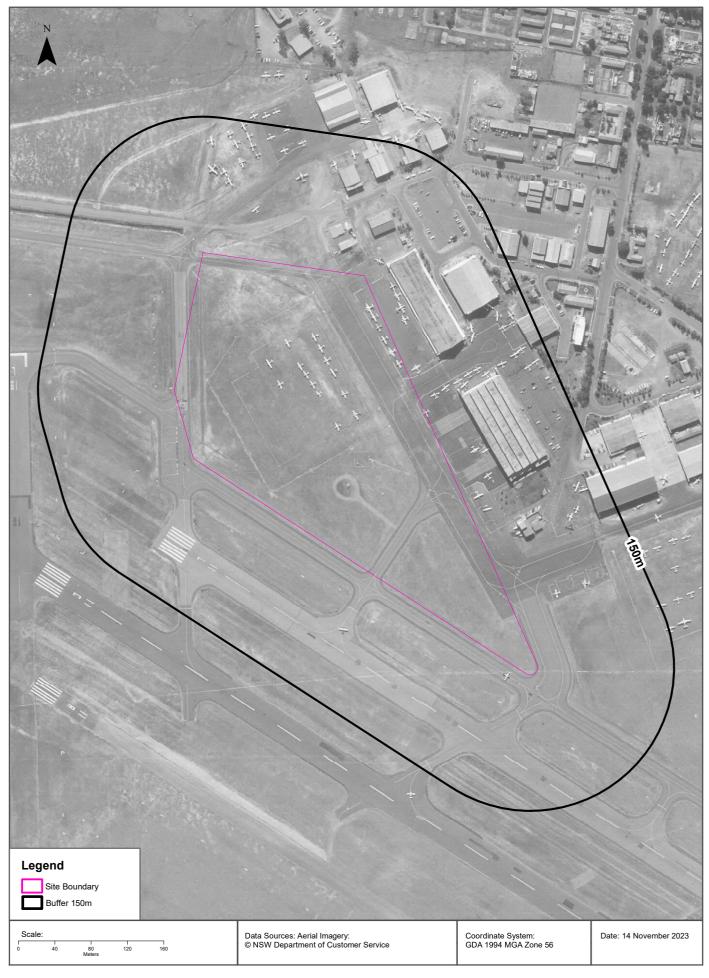
Note: The Universal Business Directories were published between 1948 and 1993. Dry Cleaners, Motor Garages & Service Stations have been extracted from all of these directories except the following years 1951, 1955, 1957, 1960, 1963, 1973, 1974, 1977, 1987.

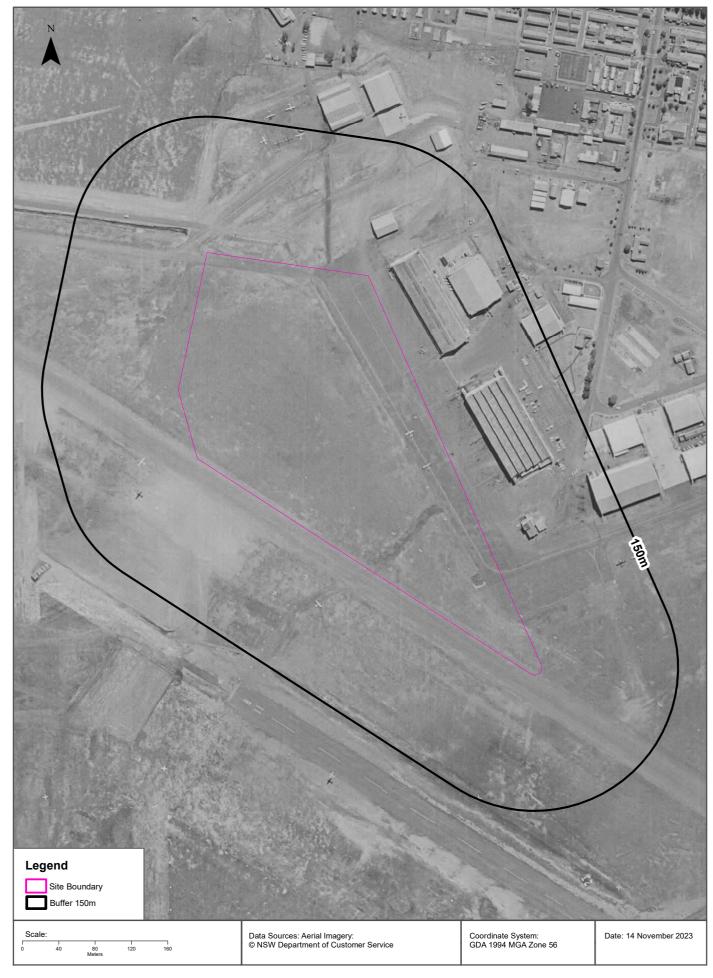
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

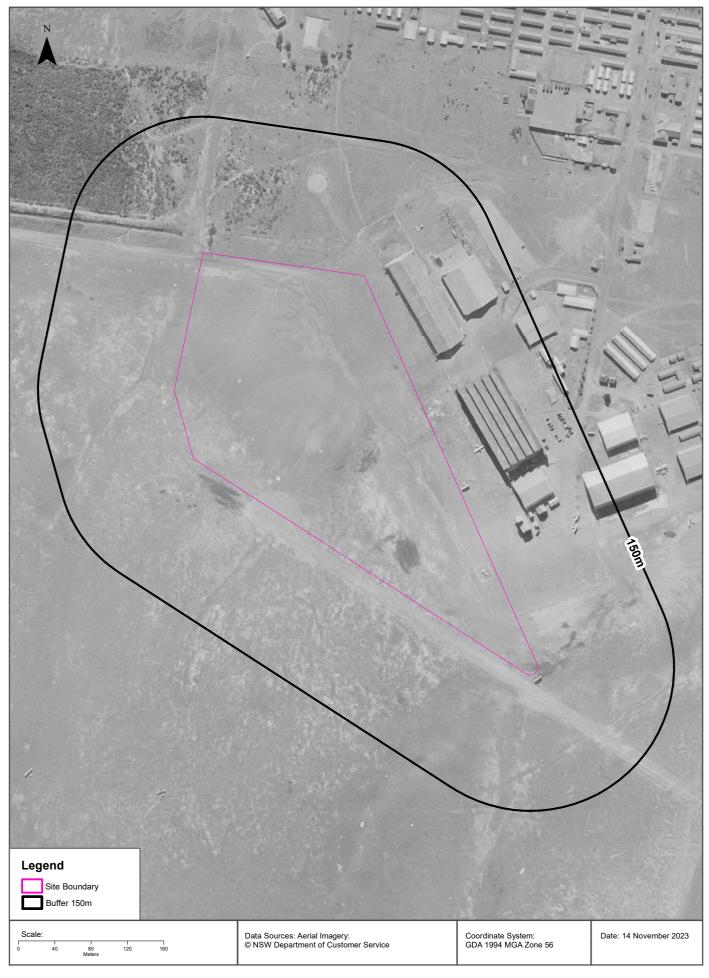




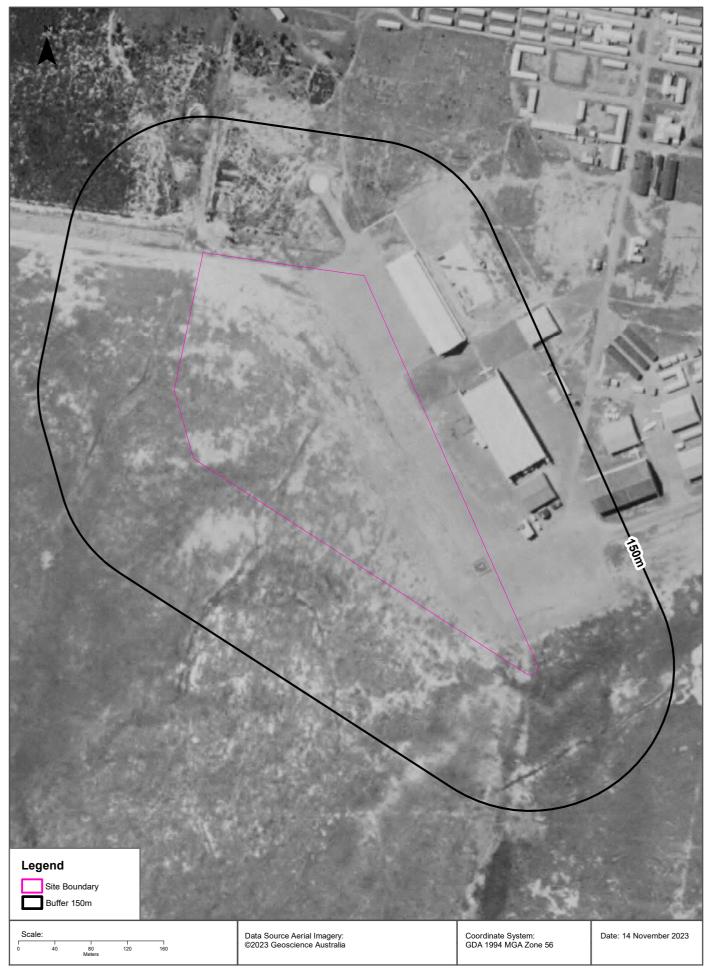


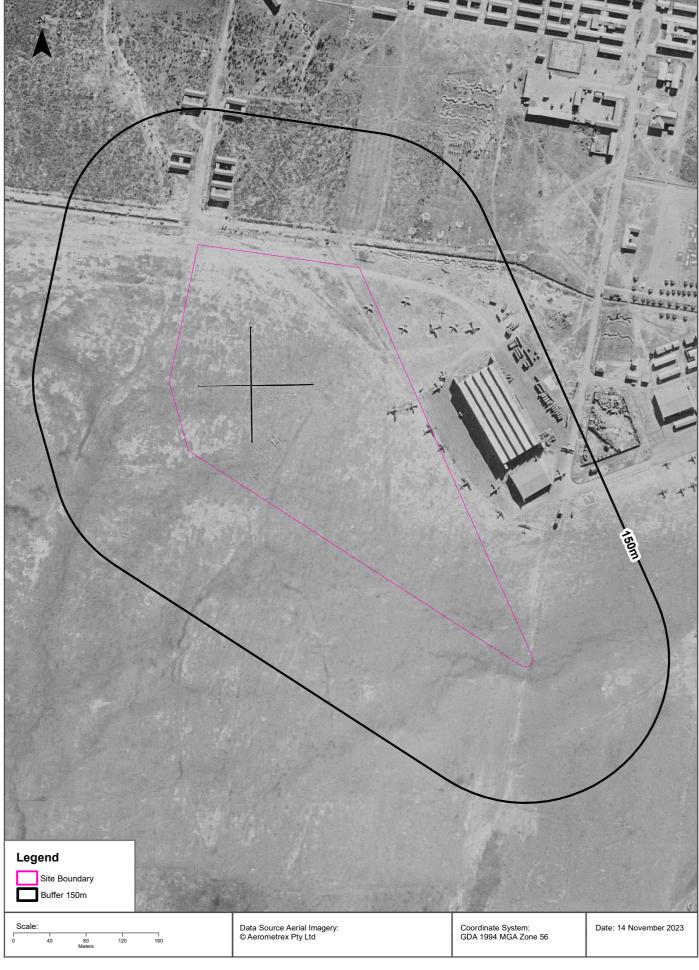


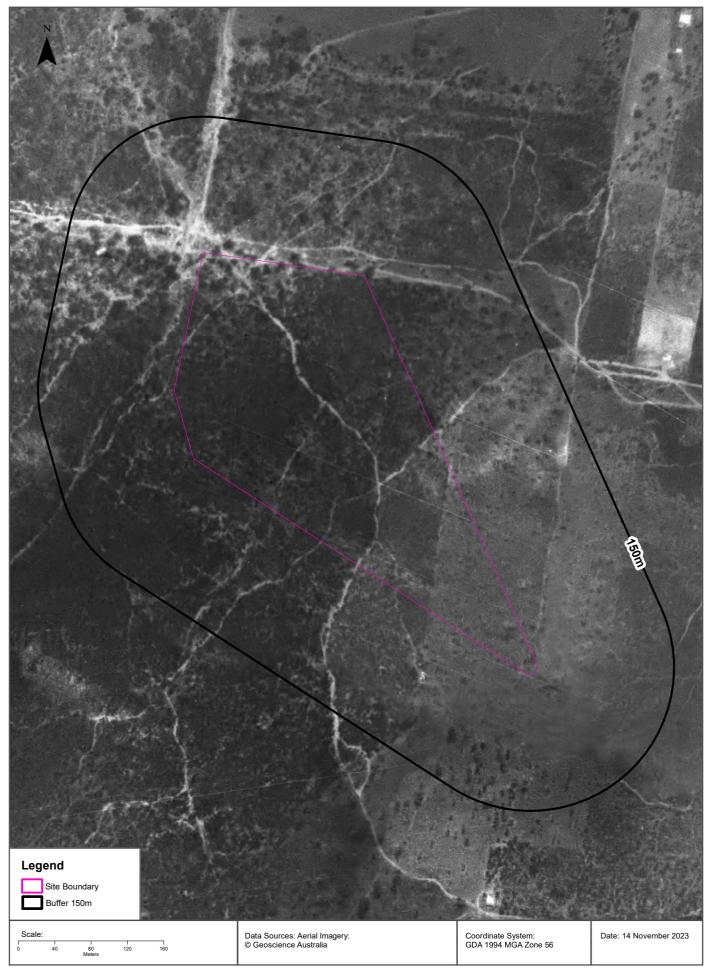


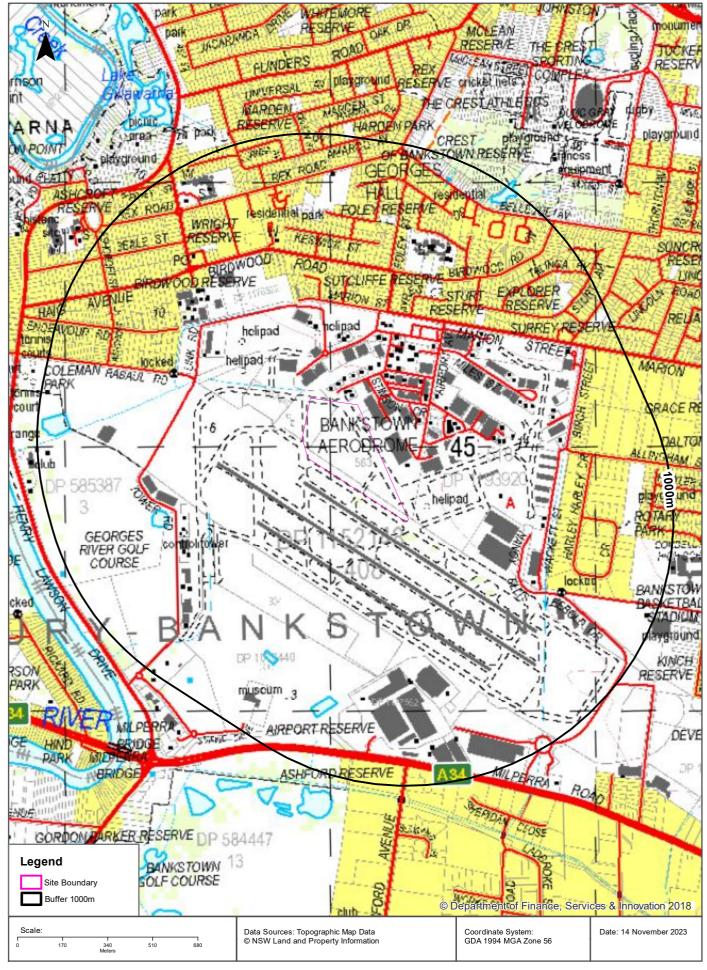


Aerial Imagery 1955, 1956





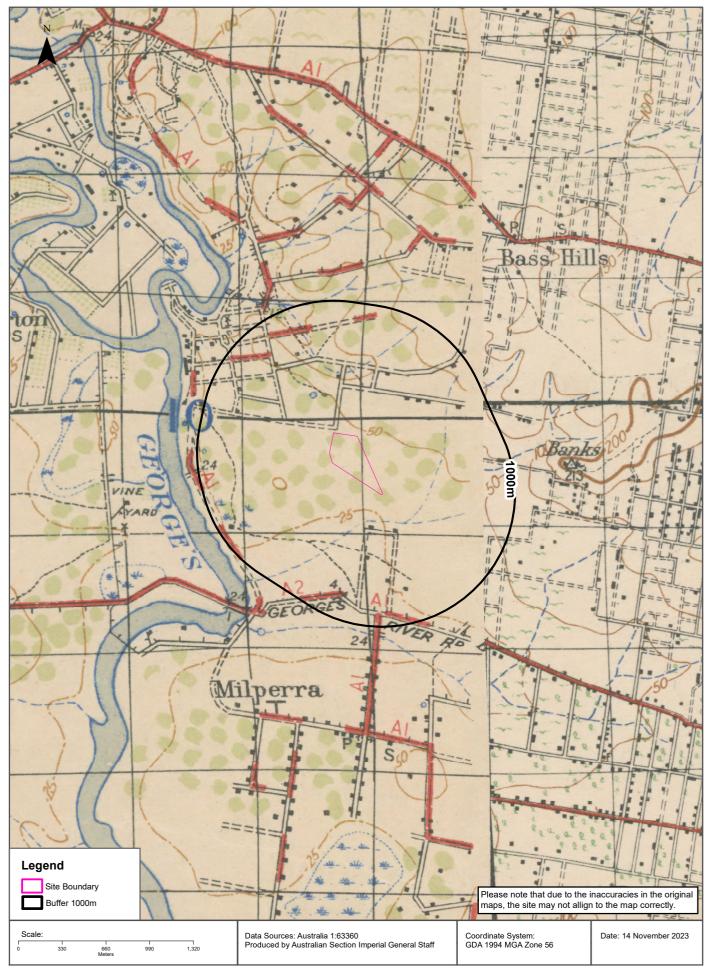




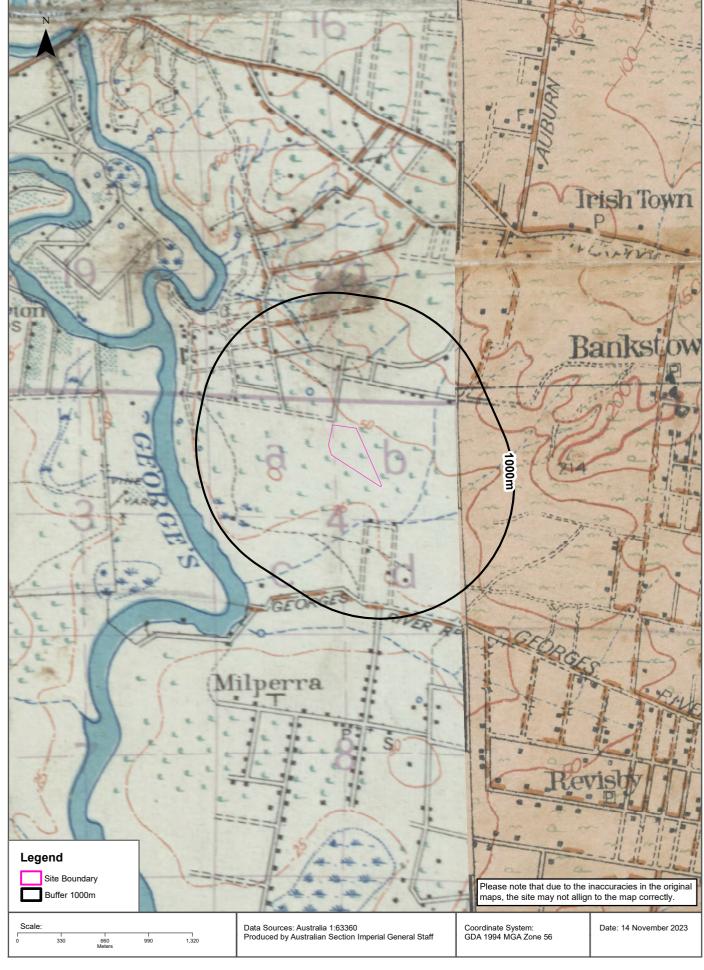
Topographic Map 2015



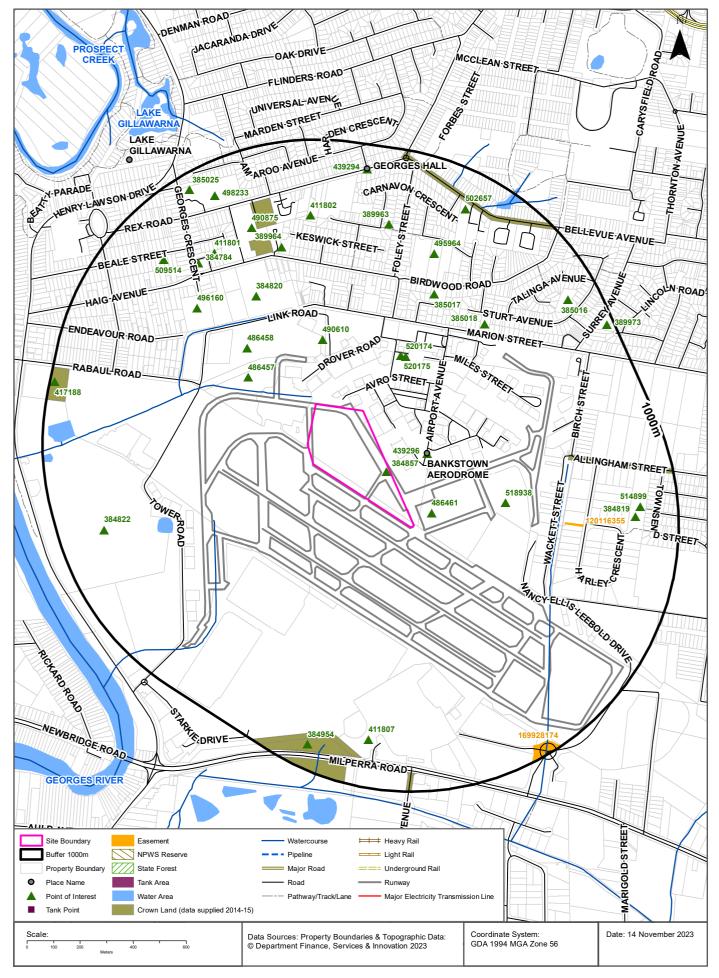
Historical Map 1975



Historical Map 1936 - 1942



Historical Map 1917 - 1929



Topographic Features

Topographic Features

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
384857	Airport	BANKSTOWN AIRPORT	0m	On-site
486461	Helipad	Helipad	80m	South East
439296	Suburb	BANKSTOWN AERODROME	155m	East
490610	Helipad	Helipad	245m	North
520175	Community Facility	CAVE RESCUE SQUAD	253m	North East
520174	Community Facility	AUSTRALIAN CIVIL AIR PATROL	260m	North East
486457	Helipad	Helipad	275m	North West
486458	Helipad	Helipad	335m	North West
518938	Ambulance Station	SYDNEY HELO AMBULANCE STATION	356m	East
384820	Park	BIRDWOOD RESERVE	467m	North West
385017	Park	SUTCLIFFE RESERVE	517m	North East
385018	Park	STURT RESERVE	563m	North East
496160	Combined Primary-Secondary School	GEORGES RIVER GRAMMAR	577m	North West
389964	Place Of Worship	ANGLICAN CHURCH	608m	North
495964	Primary School	GEORGES HALL PUBLIC SCHOOL	653m	North
411801	Park	WRIGHT RESERVE	688m	North West
384784	Post Office	GEORGES HALL POST OFFICE	694m	North West
490875	Nursing Home	GILLAWARNA VILLAGE	709m	North West
389963	Park	FOLEY RESERVE	712m	North
411802	Park	Park	714m	North
509514	Community Medical Centre	GEORGES HALL EARLY CHILDHOOD HEALTH CENTRE	792m	North West
411807	Parking Area	Parking Area	819m	South
384822	Golf Course	GEORGES RIVER GOLF COURSE	827m	West
384819	Park	ROTARY PARK	836m	East
502657	Nursing Home	ADVANTAGED CARE AT GEORGES MANOR	856m	North East
514899	Park	PLAYGROUND	857m	East
498233	Primary School	ST MARY'S CATHOLIC PRIMARY SCHOOL	875m	North West
385016	Park	EXPLORER RESERVE	880m	North East
439294	Suburb	GEORGES HALL	908m	North
384954	Park	AIRPORT RESERVE	909m	South
385025	Place Of Worship	CATHOLIC CHURCH	941m	North West

Map Id	Feature Type	Label	Distance	Direction
389973	Park	SURREY RESERVE	974m	North East
417188	Sports Field	SOCCER	983m	West

Topographic Data Source: © Land and Property Information (2015)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120116355	Primary	Undefined		572m	East
169928174	Primary	Right of way	VARIABLE	945m	South East

Easements Data Source: © Land and Property Information (2015)

 $\label{lem:commons} \textbf{Creative Commons 3.0 @ Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en} \\$

Topographic Features

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

State Forest

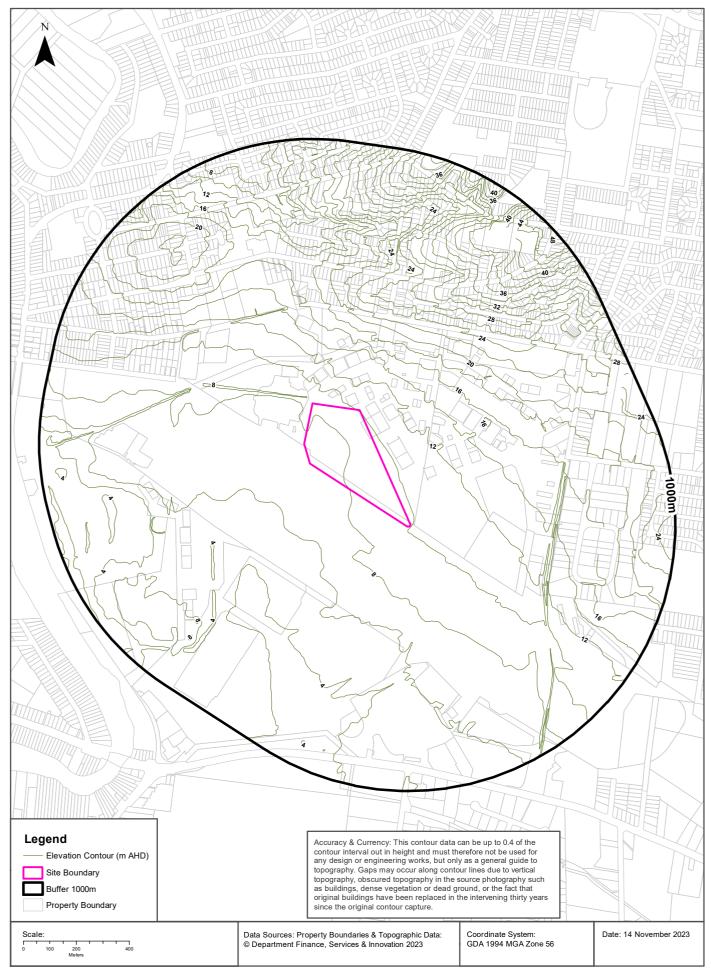
What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?


Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Hydrogeology

Description of aquifers within the dataset buffer:

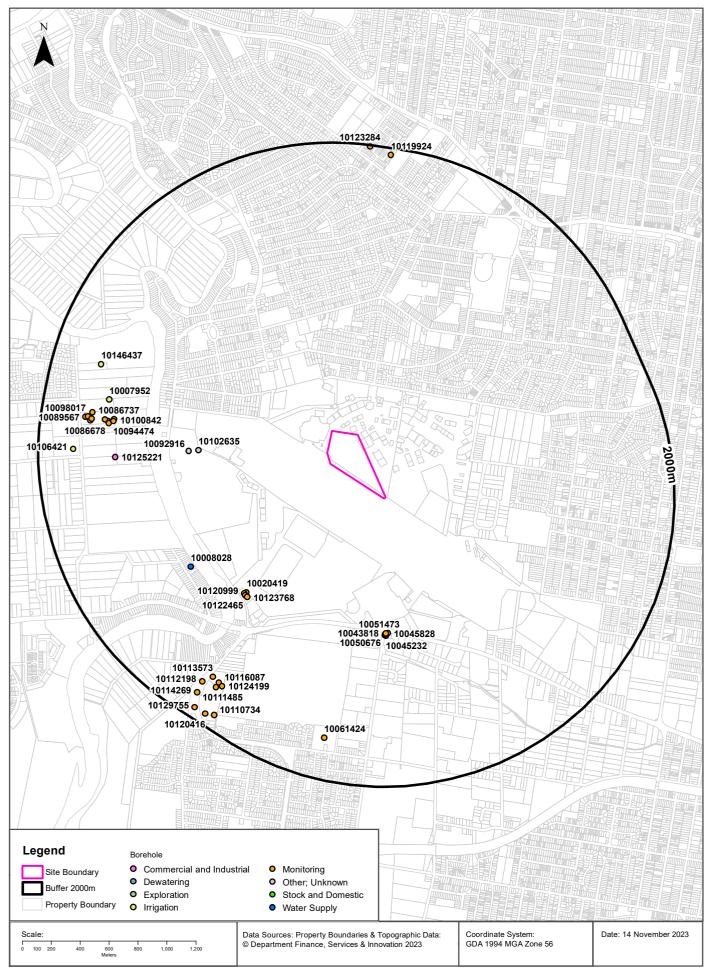
Description	Distance	Direction
Porous, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018

Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:


Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Groundwater Boreholes

Boreholes within the dataset buffer:

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10102635	GW106700	Other	Unknown	25/08/2004	16.00		AHD	Fresh	4.200	3.00	890m	West
10045828	GW113376	Monitoring	Functional	04/07/2007	5.00		AHD				936m	South
10051473	GW113375	Monitoring	Functional	04/07/2007	5.00		AHD				937m	South
10050676	GW113374	Monitoring	Functional	04/07/2007	5.00		AHD				944m	South
10043818	GW113372	Monitoring	Functional	03/07/2007	5.00		AHD				950m	South
10045232	GW113373	Monitoring	Functional	03/07/2007	4.00		AHD				954m	South
10092916	GW047864	Other	Functioning	01/12/1979	252.00		AHD	2100	1.000	21.00	957m	West
10020419	GW110200	Monitoring	Unknown	15/06/2009	8.00		AHD			5.00	1063m	South West
10120999	GW112548	Monitoring	Functional	12/04/2010	7.00		AHD			4.60	1077m	South West
10122465	GW112547	Monitoring	Functional	12/04/2010	8.00		AHD			4.80	1086m	South West
10123768	GW112549	Monitoring	Functional	12/04/2010	6.50		AHD			4.60	1088m	South West
10008028	GW023146	Water Supply	Unknown	01/11/1965	5.40		AHD	Excellent			1201m	South West
10125221	GW111086	Commercial and Industrial	Functioning	30/04/2007	180.00		AHD	2500	1.000	30.00	1466m	West
10100842	GW109761	Monitoring	Unknown	29/11/2002	8.30		AHD			7.50	1493m	West
10123006	GW109762	Monitoring	Unknown	02/12/2002	8.30		AHD			7.50	1495m	West
10094474	GW109758	Monitoring	Unknown	28/11/2002	8.30		AHD			6.70	1524m	West
10086678	GW109757	Monitoring	Unknown	28/11/2002	8.30		AHD			7.00	1533m	West
10007952	GW035498	Irrigation	Unknown	01/02/1970	16.10		AHD				1551m	West
10097347	GW109760	Monitoring	Unknown	29/11/2002	5.20		AHD				1553m	West
10086737	GW109759	Monitoring	Unknown	29/11/2002	8.20		AHD			6.70	1554m	West
10126324	GW109764	Monitoring	Unknown	03/12/2002	8.00		AHD			6.00	1646m	West
10100224	GW109756	Monitoring	Unknown	27/11/2002	8.30		AHD			6.50	1647m	West
10113143	GW109763	Monitoring	Unknown	03/12/2002	8.30		AHD			5.20	1655m	West
10095216	GW109755	Monitoring	Unknown	26/11/2002	8.70		AHD			4.00	1657m	West
10146437	GW022306	Irrigation	Unknown	01/10/1964	9.10		AHD				1661m	West
10098017	GW109754	Monitoring	Unknown	25/11/2002	1.50		AHD				1673m	West
10113573	GW115690	Monitoring	Functional	08/05/2013	5.00		AHD				1681m	South West
10089567	GW109753	Monitoring	Unknown	26/11/2002	8.00		AHD			4.00	1691m	West
10116087	GW115691	Monitoring	Functional	08/05/2013	3.40		AHD				1692m	South West
10124199	GW115692	Monitoring	Functional	08/05/2013	2.90		AHD				1701m	South West

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10061424	GW108838	Monitoring	Functioning	17/01/2006	240.00		AHD		4.000		1711m	South
10111485	GW115693	Monitoring	Functional	08/05/2013	5.00		AHD				1730m	South West
10112198	GW115694	Monitoring	Functional	08/05/2013	4.00		AHD				1747m	South West
10106421	GW019069	Irrigation	Unknown	01/09/1962	15.20		AHD	Fresh			1757m	West
10114269	GW115695	Monitoring	Functional	02/05/2013	4.00		AHD				1830m	South West
10110734	GW115698	Monitoring	Functional	22/02/2013	6.00		AHD				1900m	South West
10120416	GW115697	Monitoring	Functional	02/07/2013	4.50		AHD				1925m	South West
10129755	GW115696	Monitoring	Functional	02/08/2013	4.50		AHD				1927m	South West
10119924	GW114350	Monitoring	Functional	27/07/2007	5.30		AHD				1952m	North
10123284	GW114351	Monitoring	Functional	27/07/2007	5.70		AHD				1989m	North

Borehole Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 $^{\circ}$ Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

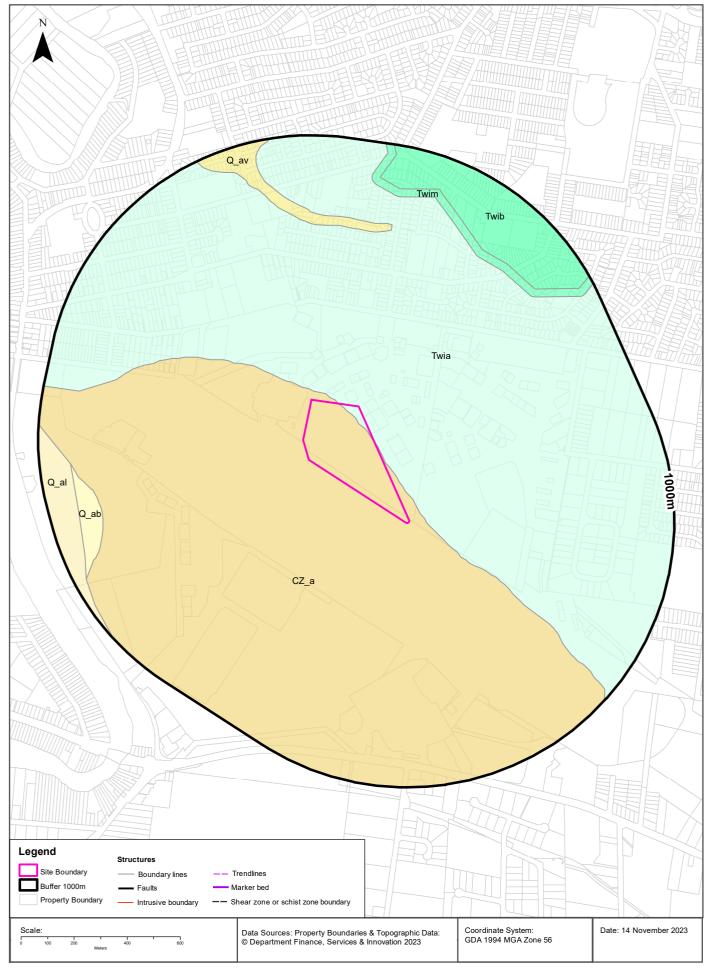
Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

NGIS Bore ID	Drillers Log	Distance	Direction
10102635	0.00m-0.30m TOPSOIL 0.30m-1.00m CLAY 1.00m-3.00m SANDY CLAY 3.00m-5.00m GREY CLAY 5.00m-12.50m SANDY CLAY 12.50m-13.00m COARSE SAND 13.00m-16.00m CLAY	890m	West
10092916	0.00m-0.50m TOPSOIL 0.50m-2.50m CLAY BROWN 2.50m-3.50m CLAY ORANGE 3.50m-3.80m SAND 3.80m-4.00m CLAY SANDY 4.00m-8.00m CLAY RED 8.00m-15.00m SAND 15.00m-63.00m SHALE BLUE 63.00m-252.00m SANDSTONE	957m	West
10020419	0.00m-0.30m FILL LOOSE 0.30m-0.80m SAND,SILTY/BROWN 0.80m-3.50m CLAY/SILT,YELLOW BROWN 3.50m-5.50m CLAY,SANDY,RED BROWN 5.50m-8.00m CLAY,SAND,RED BROWN	1063m	South West
10120999	0.00m-0.20m CONCRETE 0.20m-0.30m FILL 0.30m-0.70m SILTY SAND 0.70m-1.20m SANDY CLAY 1.20m-2.20m CLAY BROWN 2.20m-2.60m SANDY CLAY 2.60m-3.20m SAND RED, FINE 3.20m-3.60m SANDY CLAY 3.60m-6.20m CLAY STIFF TO HARD 6.20m-7.00m SANDY CLAY BROWN/GREY.SODFDT	1077m	South West
10122465	0.00m-0.30m FILL BROWN,SAND 0.30m-1.40m CLAYEY SAND,BROWN FIRM 1.40m-2.20m CLAY BROWN GREY,RED 2.20m-4.00m CLAYEY SAND,BROWN GREY 4.00m-8.00m CLAY BROWN GREY,HIGH PLASTICITY	1086m	South West
10123768	0.00m-0.20m CONCRETE 0.20m-0.90m FILL, BROWN, GREY 0.90m-3.50m CLAYEY SAND BROW/GREY/RED 3.50m-6.50m SANDY CLAY,BROWN/GREY	1088m	South West
10125221	0.00m-0.30m CONCRETE 0.30m-1.00m SAND BROWN 1.00m-2.00m CLAY RED PUGGY 2.00m-23.50m CLAY RED SANDY 23.50m-33.00m SHALE WEATHERED 33.00m-53.00m SHALE BLACK 53.00m-180.00m SANDSTONE	1466m	West
10100842	0.00m-0.20m CONCRETE 0.20m-0.90m GRAVELLY SILTY FILL,BROWN,DRY TO MOIST 0.90m-1.40m CLAY,RED,MOIST,FIRM 1.40m-1.90m SANDY CLAY WITH FINE TO MODERATE SAND,RED, MOIST, FIRM 1.90m-5.00m CLAY GREY,MOTTLED,WITH RED AND ORANGE, MOIST 5.00m-5.90m IRONSTONE BAND 5.90m-8.30m SANDY CLAY,LIGHT BROWN,VERY WET,WATER TABLE A7.7m	1493m	West
10123006	0.00m-0.20m CONCRETE 0.20m-0.30m GRAVELLY SILTY FILL,BLACK,MOIST,LOOSE 0.30m-1.70m SANDY CLAY WITH FINE TO MODERATE SAND,RED WITH SOME GREY,MOIST TO DRY,FIRM 1.70m-4.20m CLAY,GREY MOTTLED RED, MOIST,STIFF, WITH TRACES OF IRONSTONE 4.20m-4.70m SANDY CLAY WITH FINE SAND,ORANGE AND RED,MOIST,FIRM 4.70m-7.60m CLAY,GREY MOTTLED WITH RED,DRY TO MOIST,STIFF 7.60m-8.30m SANDY CLAY,GREY MOTTLED WITH ORANGE,MOIST TO WET,SOFT.	1495m	West

NGIS Bore ID	Drillers Log	Distance	Direction
10094474	0.00m-0.10m CONCRETE 0.10m-0.20m GRAVEL AND SILT FILL 0.20m-0.80m CLAYEY FILL,HARD PACKED,RED,DRY,STIFF 0.80m-1.30m CLAY,LIGHT BROWN TO BEIGE WITH RED MOTTLING,DRY,FIRM 1.30m-2.70m SANDY CLAY,FINE TO MODERATE GRAIN SAND,LIGHT BROWN 2.70m-4.60m CLAY,MOTTLED WITH RED,DRY TO MOIST,STIFF,IRONSTONE BANDS 4.60m-5.00m SANDY CLAY,GREY MOTT. WITH ORANGE,DRY TO MOIST,STIFF 5.00m-6.20m SANDY CLAY,WITH MODERATE TO FINE SAND,GREY,MOIST FIRM TO SOFT 6.20m-6.90m CLAY,GREY MOTLED WITH ORANGE,WET,SOFT 7.10m-8.30m CLAY,GREY MOTTLED WITH ORANGE,WET,SOFT 7.10m-8.30m CLAY,GREY MOTTLED WITH ORANGE, WET,FIRM	1524m	West
10086678	0.00m-0.10m CONCRETE 0.10m-0.20m SAN/FILL 0.20m-0.70m SANDY CLAY,FILL,MEDIUM GRAIN,RED,MOIST 0.70m-1.50m CLAY,HIGH PLASTICITY,MOTTLED RED,BROWN AND YELLOW 1.50m-1.90m SANDY CLAY WITH COARSE SAND,M/PLASTICITY,MOIST,SOFT 1.90m-3.40m CLAY,GREY WITH SOME RED LENSES, DRY,FIRM TO STIFF 3.40m-5.00m CLAY,RED MOTTLED WITH GREY,DRY STIFF TO VERY STIFF 5.00m-6.70m CLAY WITH SOME GRAVEL,GREY MOTTLED ORANTE,DRY,STIFF 6.70m-7.20m SANDY CLAY,MEDIUM GRAIN SAND,GREY WITH ORANGE MOTTLES 7.20m-8.30m CLAY,GREY,MOTTLED WITH ORANGE,MOIST,WET,STIFF	1533m	West
10007952	0.00m-0.61m Clay Grey Silty 0.61m-3.81m Clay Yellow 3.81m-7.01m Clay Silty 7.01m-8.53m Sand Some Coarse Water Supply 8.53m-9.14m Gravel Sandy 9.14m-11.58m Mud Silt Marine 11.58m-12.19m Sand Coarse Water Supply 12.19m-14.63m Sand Yellow Coarse Water Supply 14.63m-15.85m Sand Grey Coarse Water Supply 15.85m-16.15m Shale Grey	1551m	West
10097347	0.00m-0.10m CONCRETE 0.10m-0.40m GRAVELLY SILTY FILL,DRY TO MOIST,FIRM 0.40m-1.30m CLAY WITH TRACES OF SAND,RED,DRY TO MOIST FIRM 1.30m-3.30m SANDY CLAY,LIGHT BROWN MOTTLED WITH RED,MOIST 3.30m-5.20m CLAY,GREY MOTTLED WITH RED, MOIST, STIFF	1553m	West
10086737	0.00m-0.10m CONCRETE 0.10m-0.40m GRAVELLY SILTY FILL,DRY TO MOIST,FIRM 0.40m-1.30m CLAY,WITH TRACES OF SAND,MRED,DDRY TO MOIST FIRM 1.30m-3.30m SANDY CLAY,BROWN,MOTTLED WITH RED MOIST 3.30m-5.20m CLAY,GREY MOTTLED WITH RED,MOIST,STIFF 5.20m-6.70m CLAY,GREY,MOTTLED WITH RED FIRM TO STIFF 6.70m-8.20m SANDY CLAY,GREY STIFF	1554m	West
10126324	0.00m-0.20m CONCRETE 0.20m-0.90m GRAVELLY RUBBLE FILL, DARK BROWN WITH BLACK STAINS, DRY 0.90m-1.70m SANDY CLAY WITH FINE TO MODERATE SAND, GREY, MOTTLED RED/ORANGE 1.70m-4.30m CLAY, GREY, MOTTLED WITH RED, DRY TO MOIST, STIFF, IRONSTONE BANDS 4.30m-4.60m SANDY CLAY, GREY MOTTLED WITH RED, DRY, STIFF 6.00m-6.00m CLAY, GREY MOTTLED WITH RED, DRY, STIFF 6.00m-8.00m SANDY CLAY, BEIGE AND GREY WITH RED, WET, SOFT	1646m	West
10100224	0.00m-1.20m SILTY SAND,GRAVEL,DRY,NATURAL MATERIALS 1.20m-2.00m CLAY 2.00m-3.00m CLAYEY SAND.M/GRAINED,MOTT.GREY,BROWN,YELOW,RED,ORANGE 3.00m-3.30m GRADING TO SANDY CLAY,MEDIUM PLASTICITY,MOIST 3.30m-3.60m CLAYEY SAND,MEDIUM GRAINED RED, MOIST 3.60m-5.00m CLAY,HIGH PLASTICITY,MOTTLED GREY,RED AND YELLOW 5.00m-6.00m CLAY,HIGH PLASTICITY,GREY WITH POCKETS OF DARK BROWN ORGANIC MATERIALS,SAND 6.00m-6.50m GRADING TO SANDY CLAY,FINE SAND,MOTT.GREY,ORANGE/YELLOW 6.50m-8.30m SAND WITH SOME CLAY,M/GRAINED,YELLOW,WET.	1647m	West
10113143	0.00m-0.20m CONCRETE 0.20m-0.30m SANDY FILL,COARSE SAND,ROADBASE MATERIAL 0.30m-0.40m GRAVELLY CLAYEY FILL,MOIST,HARD PACKED 0.40m-1.20m SANDY CLAY WITH FINE GRAIN SAND,BROWN,GREY, MOIST 1.20m-2.10m CLAY,GREY,DRY,STIFF TO VERY STIFF 2.10m-5.20m CLAY,GREY,DRY,STIFF TO VERY STIFF 5.20m-8.30m SANDY CLAY,WITH FINE TO MODERATE SAND,GREY,MOIST,SOFT	1655m	West
10095216	0.00m-0.30m CONCRETE TO 290mm 0.30m-0.50m FILL.MEDIUM GRAVELLY SAND 0.50m-1.20m SANDY FILL MEDIUM GRAIN 1.20m-3.00m SANDY CLAY WITH MEDIUM GRAIN,MOIST 3.00m-4.00m SLIGHTLY SANDY CLAY RED AND GREY 4.00m-5.00m SANDY CLAY WITH MEDIUM SANDY LENSES 5.00m-6.00m CLAY STIFF,RED GREY,ORGANIC MATERIAL 6.00m-7.00m CLAY,HIGH PLASTICITY,GREY 7.00m-8.70m SAND,MEDIUM GRAIN,MOTTLED GREY,RED AND YELLOW,WET	1657m	West
10146437	0.00m-9.14m Clay Nominal Water Supply 0.00m-9.14m Gravel River Nominal	1661m	West


NGIS Bore ID	Drillers Log	Distance	Direction
10098017	0.00m-0.20m CONCRETE 0.20m-0.30m GRAVELLY SAND 0.30m-0.90m SANDY FILL MEDIUM GRAIN 0.90m-3.00m SANDY CLAY 3.00m-3.20m SLIGHTLY CLAYEY SAND,MEDIUM GRAIN,RED 3.20m-4.00m SLIGHTLY SANDY CLAY,STIFF 4.00m-5.50m SLIGHTLY SANDY CLAY VERY STIFF,REDDISH GREY,MOIST	1673m	West
10089567	0.00m-0.20m CONCRETE 0.20m-0.90m GRAVELLY SAND FILL/CONCRETE RUBBLE MEDIUM GRAIN 0.90m-1.50m CLAYEY SAND GRADING TO SANDY CLAY M/PLASTICITY, GREY, ORANGE 1.50m-3.00m CLAY, STIFF, MOTTLED GREY, ORANGE, YELLOW AND BLACK, MOIST 3.00m-3.80m CLAYEY SND, FINE GRAIN, MOTTLED GREY, DARK RED/RANGE, MOIST 3.80m-4.50m CLAY, VERY STIFF, MORRLED GRETY, RED, ORANGE AND BLACK 4.50m-6.00m CLAY WITH SOME FINE SAND, VERY STIFF 6.00m-7.00m GRADING TO SAND, SOME CLAY, M/GRAINED, DENSE, GREY 7.00m-8.00m GRADING TO CLAYEY SAND, FINE SAND, MOTTLED YELLOW AND GREY 8.00m-9.00m CLAYEY SAND, FINE GRAIN, GREY GRADING TO BROWN, MOIST TO WET	1691m	West
10061424	0.00m-0.10m topsoil 0.10m-1.20m clay, red 1.20m-1.60m clay, grey 1.60m-11.00m clay, red sandy 11.00m-22.00m clay, orange sandy 22.00m-35.00m shale, weathred 35.00m-41.00m sandstone, soft white 41.00m-240.00m sandstone,	1711m	South
10106421	0.00m-0.91m Clay Red 0.91m-3.04m Sand 0.91m-3.04m Clay Bands 3.04m-7.92m Clay Mixed 3.04m-7.92m Sand Dry 7.92m-12.19m Sand Wet Water Supply 7.92m-12.19m Clay 12.19m-15.24m Mud Sand Mixed Water Supply	1757m	West

 $\label{logDataSource:Bureau} \begin{tabular}{ll} Drill Log Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 @ Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en \end{tabular}$

Geology

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Geology

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Geological Units

What are the Geological Units within the dataset buffer?

Unit Code	Unit Name	Description	Unit Stratigraphy	Age	Dominant Lithology	Distance
CZ_a	Alluvium	Unconsolidated alluvial clay, silt, sand, and gravel deposits.	/Alluvium////	Cenozoic (base) to Now (top)	Clastic sediment	0m
Twia	Ashfield Shale	Black to light grey shale and laminite.	/Wianamatta Group//Ashfield Shale//	Middle Triassic (base) to Middle Triassic (top)	Shale	0m
Q_av	Alluvial valley deposits	Silt, clay, (fluvially deposited) lithic to quartz-lithic sand, gravel.	/Alluvium//Alluvial valley deposits//	Quaternary (base) to Now (top)	Clastic sediment	661m
Twim	Minchinbury Sandstone	Fine- to medium-grained lithic sandstone.	/Wianamatta Group//Minchinbury Sandstone//	Middle Triassic (base) to Middle Triassic (top)	Sandstone	724m
Twib	Bringelly Shale	Shale, carbonaceous claystone, laminite, lithic sandstone, rare coal.	/Wianamatta Group//Bringelly Shale//	Middle Triassic (base) to Middle Triassic (top)	Shale	754m
Q_ab	Alluvial backswamp deposits	Organic-rich mud, peat, silt, clay.	/Alluvium//Alluvial backswamp deposits//	Quaternary (base) to Now (top)	Organic rich sediment	804m
Q_al	Alluvial levee/overbank deposits	Fluvially deposited fine- to medium-grained lithic to quartz-rich sand, silt, clay.	/Alluvium//Alluvial levee/overbank deposits//	Quaternary (base) to Now (top)	Clastic sediment	880m

Linear Geological Structures

What are the Dyke, Sill, Fracture, Lineament and Vein trendlines within the dataset buffer?

Map ID	Feature Description	Map Sheet Name	Distance
No Features			

What are the Faults, Shear zones or Schist zones, Intrusive boundaries & Marker beds within the dataset buffer?

Map ID	Boundary Type	Description	Map Sheet Name	Distance
No Features				

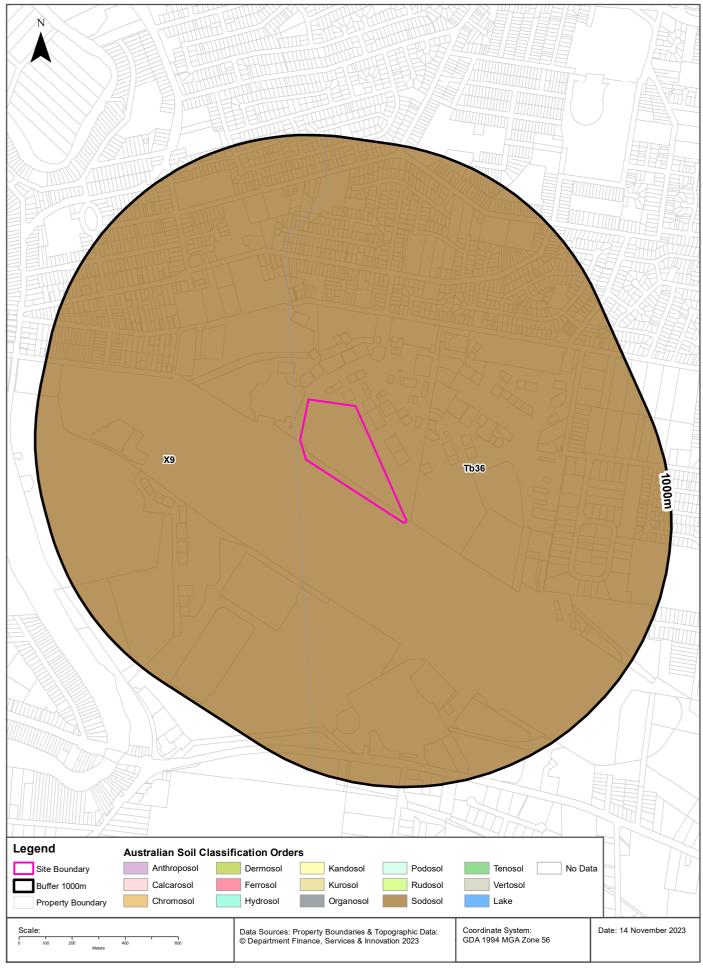
Geological Data Source: Statewide Seamless Geology v2.1, Department of Regional NSW Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Naturally Occurring Asbestos Potential

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Naturally Occurring Asbestos Potential

Naturally Occurring Asbestos Potential within the dataset buffer:


Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Atlas of Australian Soils

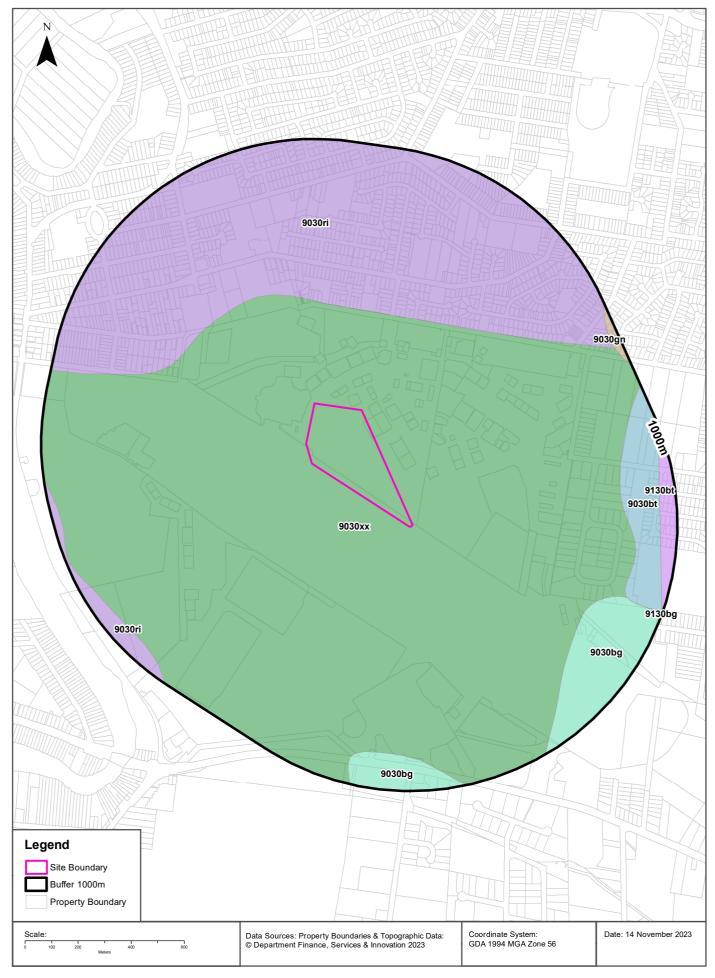
Soils

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Tb36	Sodosol	Undulating: chief soils are hard acidic yellow mottled soils (Dy3.41) usually containing some ironstone gravels throughout the profile. Associated are small areas of units Pb12 and Pb13.	0m	On-site
Х9	Sodosol	Plainsformer river terraces and levees: chief soils are sandy neutral yellow mottled soils (Dy5.42) with leached sands (Uc2.3) on the broader plains. Associated are (Dy3.41, Dy3.42, and Dy3.43) soils, some containing ironstone gravels, in relatively low-lying areas and depressions, and (Dr2.2), (Gn2.15), and (Gn2.18) soils on levees. Areas of other soils, possibly including (Um4.31), occur throughout what is a complex unit. As mapped, areas of units Gb6 and Sp1 are included.	18m	West


Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

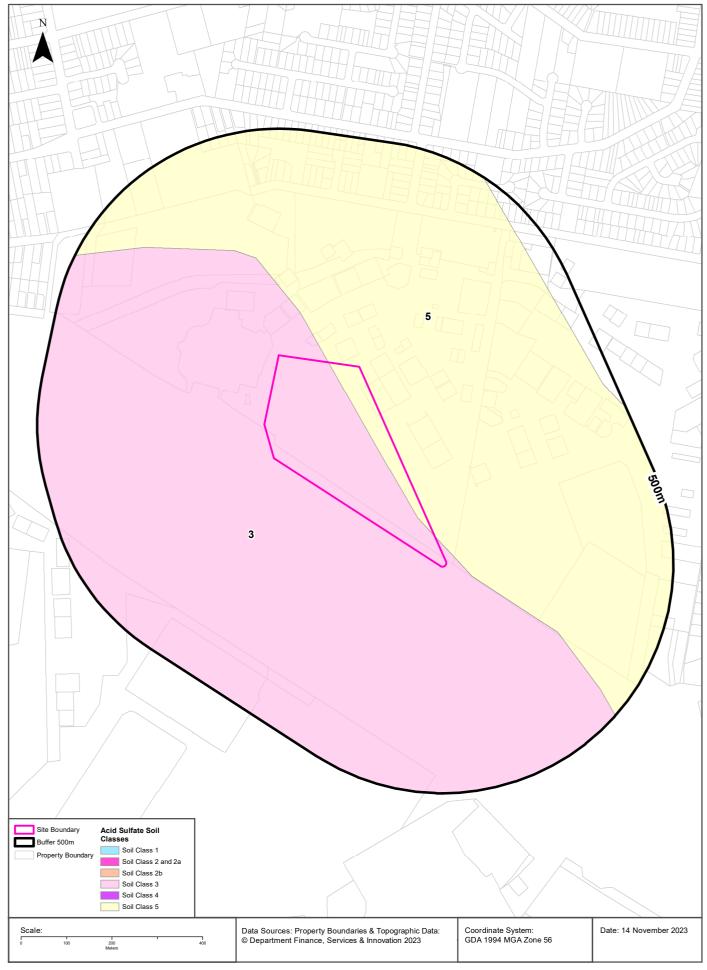
Soil Landscapes of Central and Eastern NSW

Soils

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Soil Landscapes of Central and Eastern NSW

Soil Landscapes of Central and Eastern NSW within the dataset buffer:


Soil Code	Name	Distance	Direction
<u>9030xx</u>	Disturbed Terrain	0m	On-site
<u>9030ri</u>	Richmond	375m	North
<u>9030bg</u>	Birrong	725m	South East
<u>9030bt</u>	Blacktown	791m	East
<u>9130bt</u>	Blacktown	932m	East
<u>9030gn</u>	Glenorie	962m	North East
9130bg	Birrong	996m	South East

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

Acid Sulfate Soils

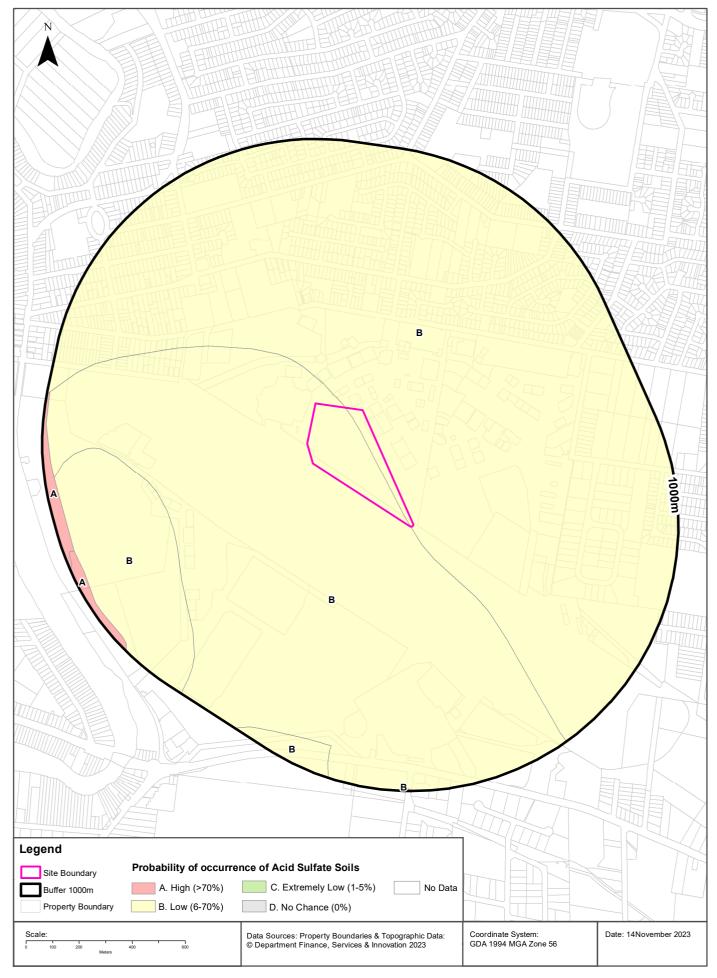
Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
3	Works more than 1 metre below natural ground surface present an environmental risk; Works by which the watertable is likely to be lowered more than 1 metre below natural ground surface, present an environmental risk	Canterbury-Bankstown Local Environmental Plan 2023

If the on-site Soil Class is 5, what other soil classes exist within 500m?


Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

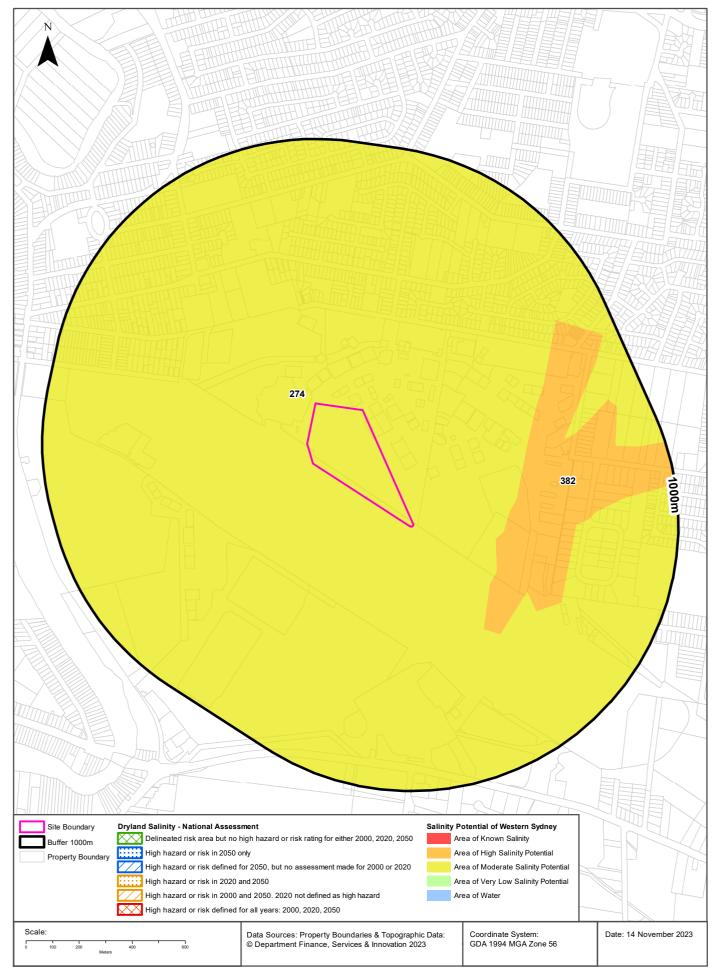
Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:


Class	Description	Distance	Direction
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m	On-site
Α	High Probability of occurrence. >70% chance of occurrence.	956m	South West

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Dryland Salinity

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source: National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney

Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
274	MODERATE	Area of Moderate Salinity Potential	0m	On-site
382	HIGH	Area of High Salinity Potential	313m	East

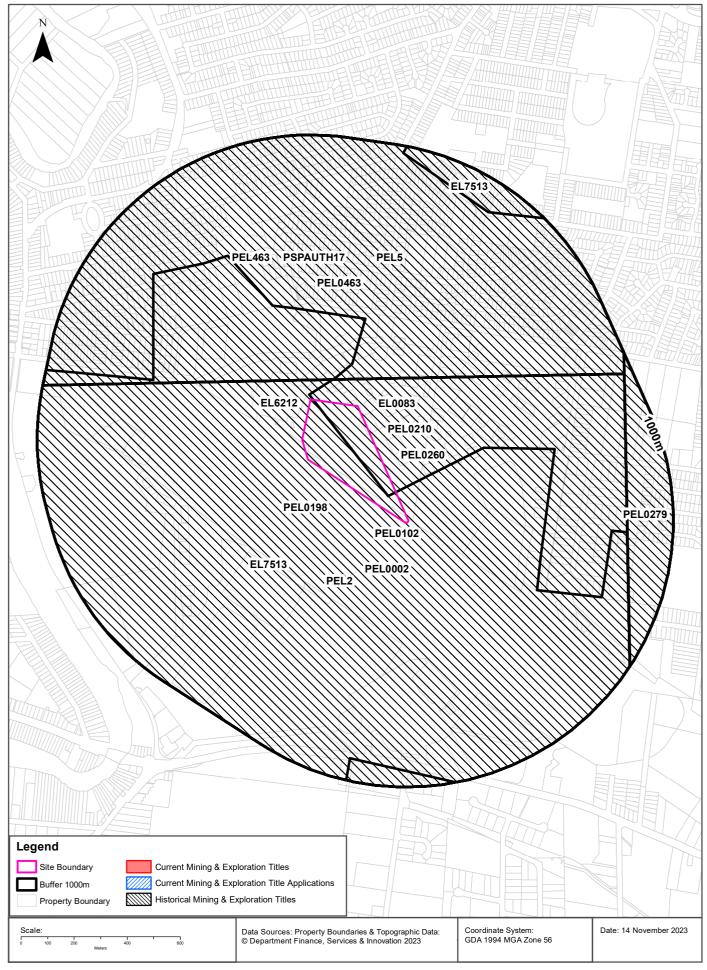
Dryland Salinity Potential of Western Sydney Data Source: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:


District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0102	AUSTRALIAN OIL AND GAS CORPORATION LTD			PETROLEUM	Petroleum	0m	On-site
EL7513	GRADIENT ENERGY LIMITED	20100407	20110415	MINERALS	Geothermal	0m	On-site
PEL0002	AGL UPSTREAM INVESTMENTS PTY LIMITED	19950503	20150607	PETROLEUM	Petroleum	0m	On-site
PEL0260	NORTH BULLI COLLIERIES PTY LTD, AGL PETROLEUM OPERATIONS PTY LTD, THE AUSTRALIAN GAS LIGHT CO.	19810909	19930803	PETROLEUM	Petroleum	0m	On-site
EL6212	HOT ROCK ENERGY PTY LTD,LONGREACH OIL LIMITED	20040304	20130303	MINERALS	Geothermal	0m	On-site
PEL0198	JOHN STREVENS (TERRIGAL) NL			PETROLEUM	Petroleum	0m	On-site
PEL0210	THE AUSTRALIAN GAS LIGHT COMPANY (AGL), NORTH BULLI COLLIERIES PTY LTD			PETROLEUM	Petroleum	0m	On-site
EL0083	CONTINENTAL OIL CO OF AUSTRALIA LIMITED	19670201	19680201	MINERALS		0m	On-site
PEL2	AGL UPSTREAM INVESTMENTS PTY LIMITED	20000120	20001108	MINERALS		0m	On-site
PSPAUTH17	MACQUARIE ENERGY PTY LTD	20070803	20080703	PETROLEUM	Petroleum	73m	North
PEL463	DART ENERGY (APOLLO) PTY LTD	20081022	20130227	MINERALS		73m	North
PEL5	AGL UPSTREAM INVESTMENTS PTY LIMITED	19931111	20011210	MINERALS		73m	North
PEL0463	DART ENERGY (APOLLO) PTY LTD	20091010	20150603	PETROLEUM	Petroleum	73m	North
PEL0279	THE ELECTRICITY COMMISSION OF NSW (TRADING AS PACIFIC POWER)	19910504	19931111	PETROLEUM	Petroleum	825m	East

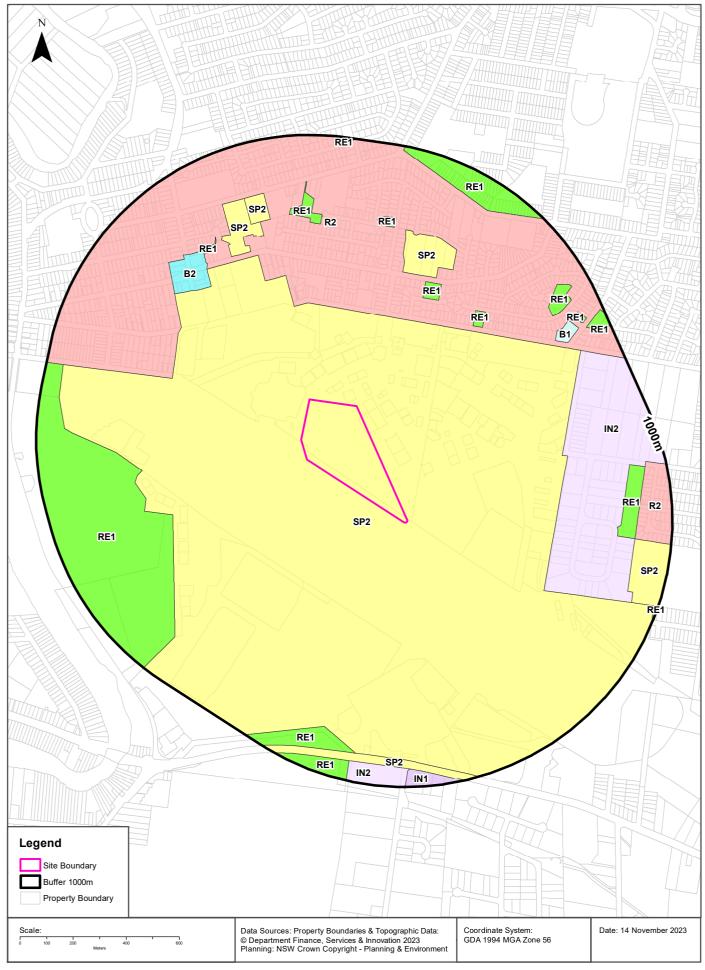
Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?


Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones

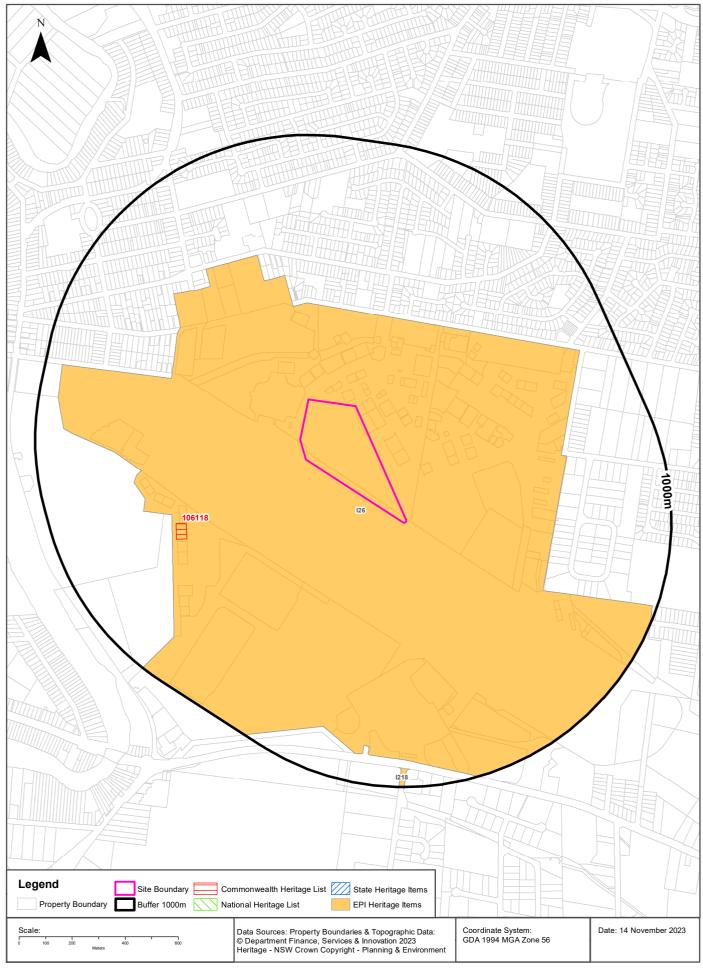
Environmental Planning Instrument

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
SP2	Infrastructure	Air Transport Facility	Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		0m	On-site
R2	Low Density Residential		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		354m	North
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		481m	North East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		532m	North East
SP2	Infrastructure	Educational Establishment	Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		536m	North
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		548m	West
IN2	Light Industrial		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		551m	East
B2	Local Centre		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		567m	North West
SP2	Infrastructure	Educational Establishment	Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		602m	North West
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		664m	North West
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		666m	North
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		692m	North
SP2	Infrastructure	Community Facility	Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		698m	North
B1	Neighbourhood Centre		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		783m	North East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		790m	East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		813m	North East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		827m	South
SP2	Infrastructure	Educational Establishment	Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		858m	East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		884m	North East
SP2	Infrastructure	Road Infrastructure Facility	Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		888m	South


Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		889m	North East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		911m	North East
IN2	Light Industrial		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		919m	South
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		923m	South
IN1	General Industrial		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		931m	South
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		980m	South East
RE1	Public Recreation		Canterbury-Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	28/07/2023		981m	North

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
106118	Bankstown Airport Air Traffic Control Tower	Tower Rd, Bankstown NSW	1/16/003/0010	Historic	Minister considering decision within extended period		511m	South West

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

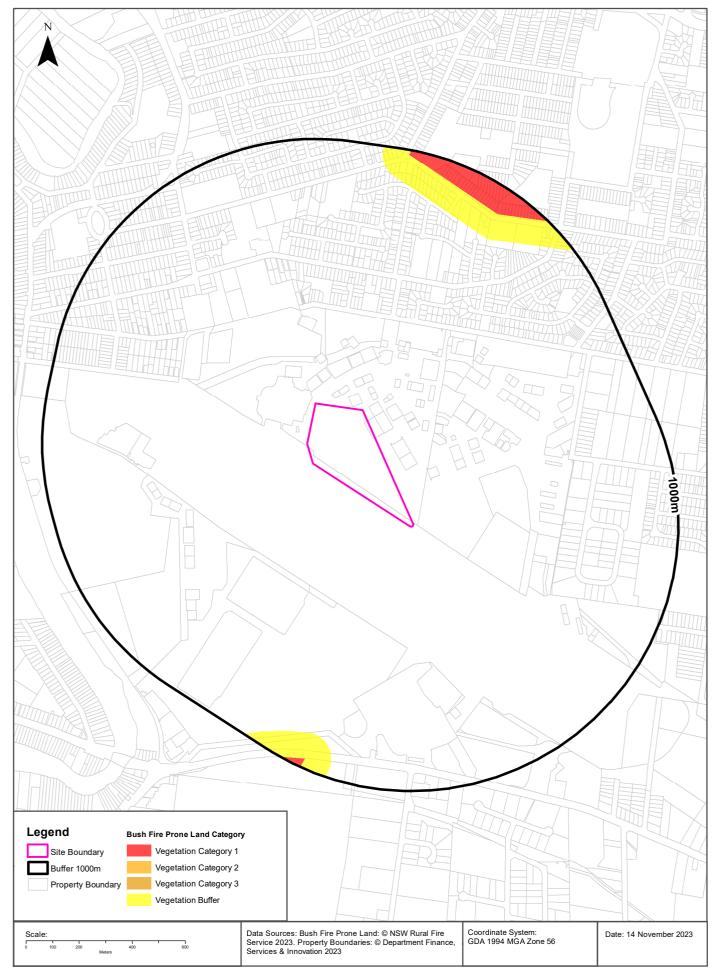
What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?


Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
126	Bankstown Aerodrome	Item - General	Local	Canterbury- Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	23/06/2023	0m	On-site
I218	Milperra Soldier Settlement (former)	Item - General	Local	Canterbury- Bankstown Local Environmental Plan 2023	23/06/2023	23/06/2023	23/06/2023	925m	South

Heritage Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

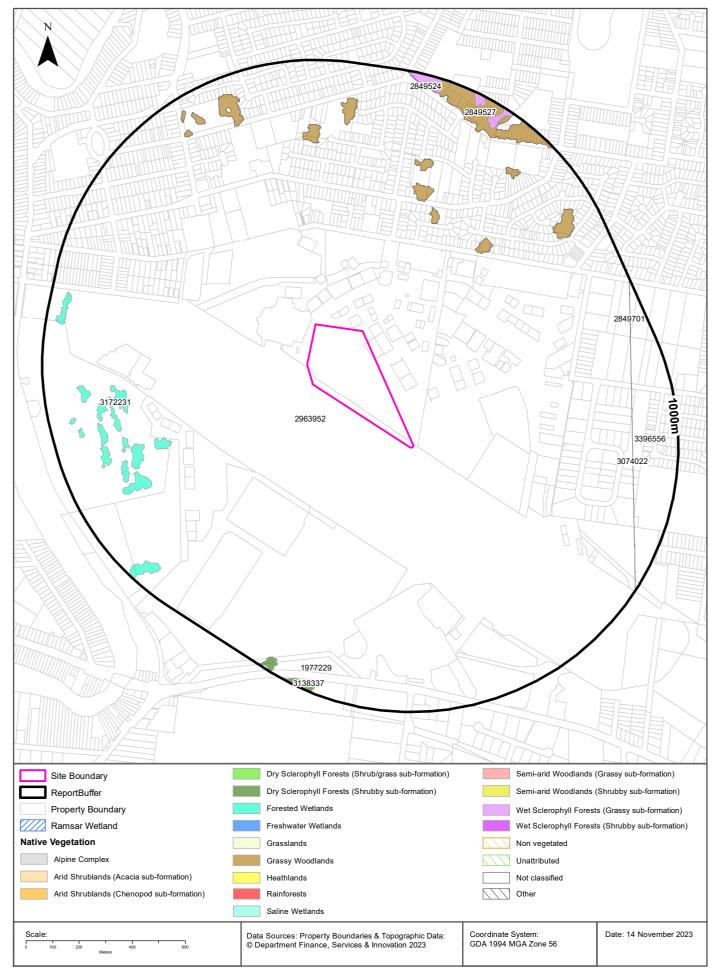
Natural Hazards - Bush Fire Prone Land

Natural Hazards

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?


Bush Fire Prone Land Category	Distance	Direction
Vegetation Buffer	799m	North East
Vegetation Category 1	899m	North East

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Ecological Constraints

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Native Vegetation

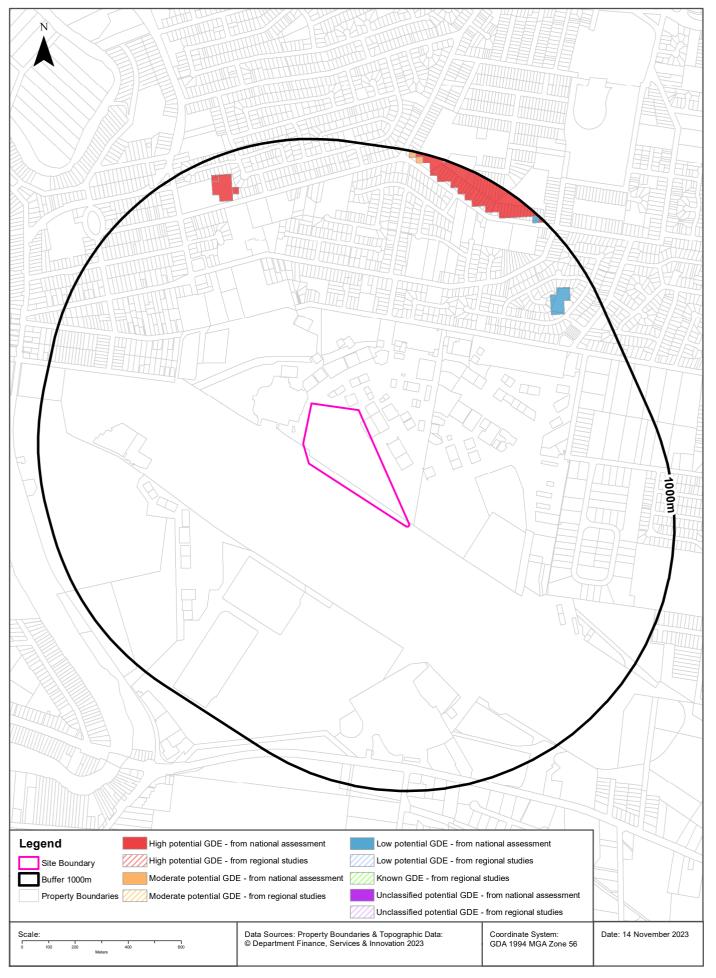
What native vegetation exists within the dataset buffer?

Map ID	Vegetation Formation	Plant Community Type and Vegetation Formation	Vegetation Class	Dist	Dir
2963952	Not classified	(Not classified) Not classified	Not classified	0m	On-site
2849527	Grassy Woodlands	(Grassy Woodlands) Cumberland Shale Plains Woodland	Coastal Valley Grassy Woodlands	484m	North
3172231	Forested Wetlands	(Forested Wetlands) Cumberland Blue Box Riverflat Forest	Coastal Floodplain Wetlands	575m	West
3396556	Not classified	(Not classified) Not classified	Not classified	825m	East
2849701	Unattributed	(Unattributed) Unattributed	Unattributed	826m	East
3074022	Unattributed	(Unattributed) Unattributed	Unattributed	827m	East
1977229	Forested Wetlands	(Forested Wetlands) Coastal Floodplain Swamp Paperbark Scrub	Coastal Swamp Forests	894m	South
2849524	Wet Sclerophyll Forests (Grassy sub-formation)	(Wet Sclerophyll Forests (Grassy sub-formation)) Sydney Turpentine Ironbark Forest	Northern Hinterland Wet Sclerophyll Forests	907m	North East
3138337	Dry Sclerophyll Forests (Shrubby subformation)	(Dry Sclerophyll Forests (Shrubby sub-formation)) Castlereagh Shrubby Swamp Woodland	Sydney Sand Flats Dry Sclerophyll Forests	945m	South

Native Vegetation Type Map: NSW Department of Planning and Environment 2022 Creative Commons Attributions 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?


Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

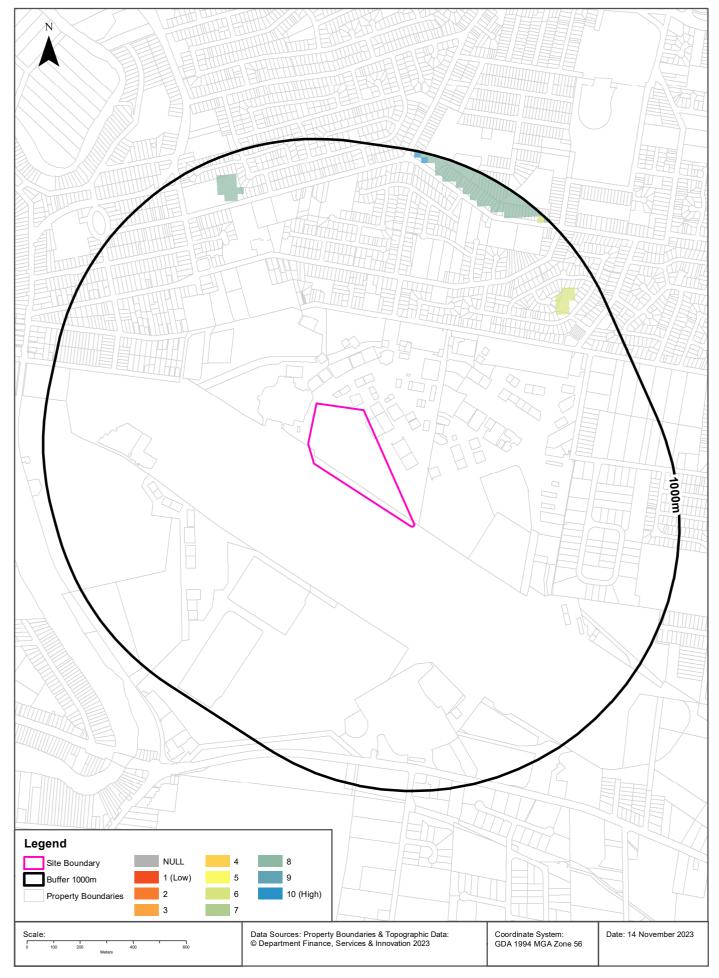
Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Ecological Constraints

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Groundwater Dependent Ecosystems Atlas


Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	Low potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	810m	North East
Terrestrial	High potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	823m	North West
Terrestrial	Moderate potential GDE - from national assessment	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	958m	North

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Ecological Constraints

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	6	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	810m	North East
Terrestrial	8	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	823m	North West
Terrestrial	10	Undulating to low hilly country, mainly on shale.	Vegetation	Consolidated sedimentary	958m	North

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

Bankstown Airport - Skyfield Development, Bankstown Aerodrome, Bankstown, NSW 2200

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Category 2	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardenna pacifica	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Endangered	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	South-eastern Glossy Black- Cockatoo	Vulnerable	Category 2	Vulnerable	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Columba vitiensis godmanae	White-throated Pigeon (Lord Howe Is. subsp.)	Extinct	Not Sensitive	Extinct	
Animalia	Aves	Cuculus optatus	Oriental Cuckoo	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Cyanoramphus novaezelandiae subflavescens	Red-crowned Parakeet (Lord Howe Is. subsp.)	Presumed Extinct	Not Sensitive	Extinct	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Drymodes brunneopygia	Southern Scrub- robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Falco hypoleucos	Grey Falcon	Vulnerable	Category 2	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Geophaps scripta scripta	Squatter Pigeon (southern subspecies)	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Melithreptus gularis gularis	Black-chinned Honeyeater (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Menura alberti	Albert's Lyrebird	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Neochmia ruficauda	Star Finch	Presumed Extinct	Not Sensitive	Endangered	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pachycephala olivacea	Olive Whistler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica rodinogaster	Pink Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis anthopeplus monarchoides	Regent Parrot (eastern subspecies)	Endangered	Category 3	Vulnerable	
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Puffinus assimilis	Little Shearwater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Thinornis cucullatus cucullatus	Eastern Hooded Dotterel	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Gastropoda	Meridolum corneovirens	Cumberland Plain Land Snail	Endangered	Not Sensitive	Not Listed	
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Furseal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Isoodon obesulus obesulus	Southern Brown Bandicoot (eastern)	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Notomys cervinus	Fawn Hopping- mouse	Extinct	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus australis	Yellow-bellied Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petrogale penicillata	Brush-tailed Rock-wallaby	Endangered	Not Sensitive	Vulnerable	
Animalia	Mammalia	Phascogale tapoatafa	Brush-tailed Phascogale	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Reptilia	Hemiaspis damelii	Grey Snake	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Uvidicolus sphyrurus	Border Thick- tailed Gecko	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Varanus rosenbergi	Rosenberg's Goanna	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia prominens	Gosford Wattle	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Acacia pubescens	Downy Wattle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Allocasuarina diminuta subsp. mimica		Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Allocasuarina glareicola		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Caesia parviflora var. minor	Small Pale Grass- lily	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Caladenia tessellata	Thick Lip Spider Orchid	Endangered	Category 2	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Cymbidium canaliculatum	Tiger Orchid	Not Listed	Category 2	Not Listed	
Plantae	Flora	Deyeuxia appressa		Endangered	Not Sensitive	Endangered	
Plantae	Flora	Diuris aequalis	Buttercup Doubletail	Endangered	Category 2	Vulnerable	
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus alligatrix subsp. alligatrix		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea beadleana	Beadle's Grevillea	Endangered	Category 3	Endangered	
Plantae	Flora	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Hibbertia fumana		Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Hibbertia puberula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Hibbertia sp. Bankstown		Critically Endangered	Not Sensitive	Critically Endangered	
Plantae	Flora	Hibbertia stricta subsp. furcatula		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Isotoma fluviatilis subsp. fluviatilis		Not Listed	Category 3	Extinct	
Plantae	Flora	Leucopogon exolasius	Woronora Beard- heath	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Marsdenia viridiflora subsp. viridiflora	Native Pear	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Melaleuca deanei	Deane's Paperbark	Vulnerable	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Persoonia hirsuta	Hairy Geebung	Endangered	Category 3	Endangered	
Plantae	Flora	Persoonia nutans	Nodding Geebung	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Pimelea spicata	Spiked Rice- flower	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Pomaderris brunnea	Brown Pomaderris	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Pomaderris prunifolia	Plum-leaf Pomaderris	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Prostanthera saxicola		Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Pterostylis saxicola	Sydney Plains Greenhood	Endangered	Category 2	Endangered	
Plantae	Flora	Pultenaea aristata	Prickly Bush-pea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Pultenaea parviflora		Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Pultenaea pedunculata	Matted Bush-pea	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Critically Endangered	
Plantae	Flora	Syzygium moorei	Durobby	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Thesium australe	Austral Toadflax	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Tylophora woollsii	Cryptic Forest Twiner	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Wahlenbergia multicaulis	Tadgell's Bluebell	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Wilsonia backhousei	Narrow-leafed Wilsonia	Vulnerable	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

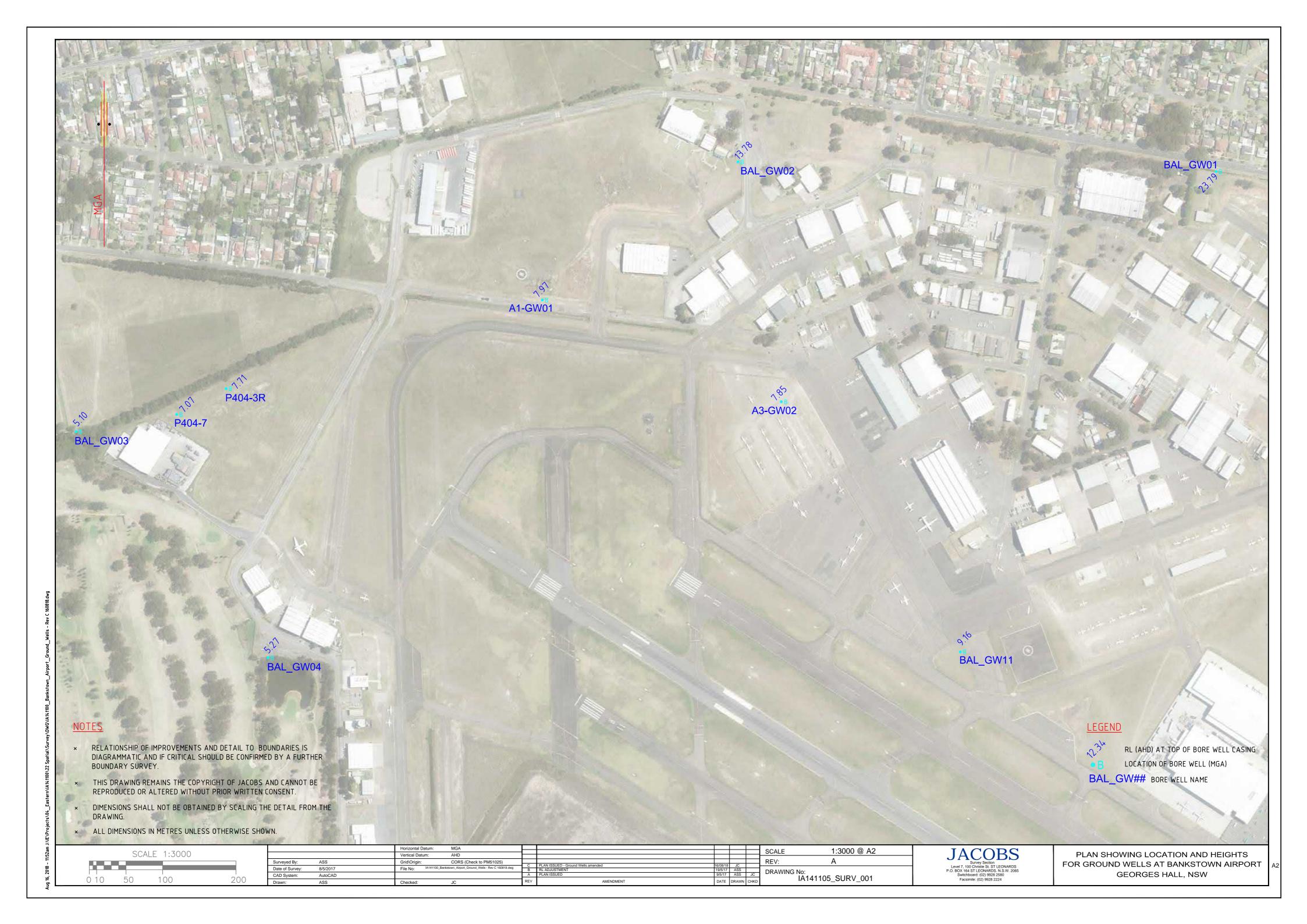
Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the


- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Jacobs Monitoring Well Locations and PFAS Source Areas

Bankstown airport

Potential PFAS sources:

- Use and storage of AFFF in the former fire training area.
 Use of AFFF for fire training in the area on Link Road.
 Use of AFFF for fire training in the north east of the Airport, near Schofields Flying Club
- 4 Use and storage of AFFF in the former fire station area
- 5 Fire incident on runway 29R on 7/10/2002 (location not identified)6 Fire incident in former Qantas test cell on 9/11/2002
- 7 Fire incident on runway in Southern Triangle on 11/11/2003 8 Fire incident near former fire training area in 2005
- 9 Fire incident near Link Rd in 2006
- 10 Helicopter fire near TOLL facility in 201111 Storage of AFFF at the Turbomeca facility12 Landfill areas 1 and 2

- 13 Historic use of mist suppressants at the Hawker de Havilland and Pacific Turbine facility 14 Aviation hydraulic fluid (location not identified)

Appendix C: Laboratory Results Summary Tables

Soil

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: **Ambient Background Concentration** PCBs: Polychlorinated Biphenyls

Perchloroethylene (Tetrachloroethylene or Teterachloroethene) ACM: **Asbestos Containing Material** PCE:

ADWG: AustralianDrinking Water Guidelines pH_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight AF: **Asbestos Fines** pH of filtered 1:20 1M KCl after peroxide digestion pH_{ox}:

ANZG Australian and New Zealand Guidelines PQL: **Practical Quantitation Limit**

B(a)P: Benzo(a)pyrene RS: Rinsate Sample

CEC: Cation Exchange Capacity RSL: Regional Screening Levels CRC: Cooperative Research Centre RSW: Restricted Solid Waste CT: Contaminant Threshold SAC: Site Assessment Criteria

EILs: **Ecological Investigation Levels** SCC: Specific Contaminant Concentration

ESLs: Chromium reducible sulfur **Ecological Screening Levels** S_{Cr}: FA: Fibrous Asbestos Spns: Peroxide oxidisable Sulfur GIL: **Groundwater Investigation Levels** SSA: Site Specific Assessment

GSW: General Solid Waste **SSHSLs:** Site Specific Health Screening Levels

HILS: **Health Investigation Levels** Total Actual Acidity in 1M KCL extract titrated to pH6.5 TAA:

TS:

Trip Spike

HSLs: **Health Screening Levels** TB: Trip Blank

HSL-SSA: Health Screening Level-SiteSpecific Assessment TCA: 1,1,1 Trichloroethane (methyl chloroform) kg/L kilograms per litre TCE: Trichloroethylene (Trichloroethene) NA: Not Analysed TCLP: Toxicity Characteristics Leaching Procedure

NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest NEPM: National Environmental Protection Measure

NHMRC: National Health and Medical Research Council TRH: **Total Recoverable Hydrocarbons**

NL: Not Limiting TSA: Total Sulfide Acidity (TPA-TAA)

NSL: No Set Limit UCL: Upper Level Confidence Limit on Mean Value OCP: Organochlorine Pesticides **USEPA** United States Environmental Protection Agency OPP: Organophosphorus Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation

%w/w: weight per weight Parts per million ppm:

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with high traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

TABLE S1
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.
HIL-D: 'Commercial/industrial'

All data in mg/kg unless stated otherwise			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	PAHs Carcinogenic PAHs	НСВ	ORGANOCHL Endosulfan Methoxychlor			Chlordane	DDT, DDD & DDE	Heptachlor	OP PESTICIDES (OPPs) Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Services Site Assessment Criteria (S	SAC)		4 3000	0.4 900	1 3600	1 240000	1 1500	0.1 730	1 6000	1 400000	4000	0.5 40	0.1 80	0.1 2000	0.1 2500	0.1 45	0.1 530	0.1 3600	0.1 50	0.1 2000	0.1 7	100 Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH101	0-0.1	Fill: silty clay	<4 4	<0.4	13	20	120	<0.1	17	48	0.86	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH101 - [LAB_DUP] BH101	0-0.1	Fill: silty clay Fill: silty clay	<4	<0.4	21 16	18 12	120 14	<0.1	17 2	48	1.4 <0.05	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	NA Not Detected
BH101	1.3-1.5	Silty clay	<4	<0.4	7	14	7	<0.1	2	6	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH102 BH102	0-0.2	Fill: silty clay Silty clay	<4 <4	<0.4	15 14	27 14	49 10	<0.1	20	43	2.2 <0.05	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected NA
BH102	1.7-1.95	Silty clay	6	<0.4	12	15	15	<0.1	4	11	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH103	0.05-0.15	Fill: gravelly sand	<4	<0.4	18	73	2	<0.1	140	50	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH103 BH103	0.4-0.6	Fill: silty clay Silty clay	5 6	<0.4	17	14	10 14	<0.1	2	6	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH104	0-0.1	Fill: silty clay	7	<0.4	20	24	71	<0.1	8	68	2.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH104	0.2-0.3	Fill: silty clay	<4	<0.4	10	2	15	<0.1	2	2	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH104 - [LAB_DUP] BH104	0.2-0.3 1.7-2.0	Fill: silty clay Silty clay	<4 5	<0.4	9	15	11 16	<0.1	2	6	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA
BH105	0-0.2	Fill: silty clay	9	<0.4	21	9	29	<0.1	5	21	2.6	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH105 BH105	0.4-0.5	Silty clay	4 <4	<0.4	16 12	16 12	11 12	<0.1	2	10 8	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1	<0.1 NA	<0.1 NA	Not Detected NA
BH106	0.1-0.3	Silty clay Fill: silty clay	6	<0.4	16	20	20	<0.1	6	15	4.3	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA <0.1	<0.1	<0.1	Not Detected
BH106	0.4-0.6	Fill: silty clay	<4	<0.4	16	12	9	<0.1	3	7	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH106 BH107	0-0.2	Silty clay Fill: silty clay	<4 5	<0.4	7 15	10	5 16	<0.1	2	6	<0.05 <0.05	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
BH107	0.5-0.7	Silty clay	5	<0.4	11	13	13	<0.1	1	6	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
BH107	1.5-1.7	Silty clay	<4	<0.4	5	8	6	<0.1	2	3	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH108 BH108 - [LAB_DUP]	0-0.2	Fill: silty clay Fill: silty clay	9	0.5	25 25	9	42 40	0.2 <0.1	3	20	<0.05 <0.05	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	0.8	<0.1	<0.1 <0.1	<0.1	Not Detected NA
BH108 - [LAB_DOP]	0.5-0.7	Silty clay	4	<0.4	12	10	10	<0.1	2	6	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	NA NA
BH108	0.8-1.0	Silty clay	<4	<0.4	12	10	11	<0.1	2	6	<0.05	<0.5	NA 10.4	NA -0.1	NA	NA 10.1	NA 10.4	NA -0.4	NA -0.4	NA 10.4	NA 10.1	NA NA RAMANA
BH109 BH109	0-0.15	Fill: silty clay Fill: silty clay	5	<0.4	14	21 12	59 12	<0.1	11 2	76 6	1.3 <0.05	<0.5 <0.5	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected Not Detected
BH109	1.3-1.5	Silty clay	<4	<0.4	8	11	8	<0.1	2	7	<0.05	<0.5	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA
BH110	0-0.1	Fill: silty clay	<4	0.6	10	17	74	<0.1	7	56	3	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH110 BH110	0.5-0.8 1.3-1.5	Fill: silty clay Silty clay	4 <4	<0.4	17 8	6	13 5	<0.1	1	10	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH111	0-0.1	Fill: silty clay	5	0.6	18	28	50	<0.1	12	70	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH111 - [LAB_DUP]	0-0.1	Fill: silty clay	4	0.7	19	33	54	<0.1	13	79	1.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
BH111 BH111	0.2-0.5	Fill: silty clay Silty clay	5	<0.4	16 14	10	12 11	<0.1	3	10	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA
BH112	0-0.1	Fill: silty clay	5	0.4	20	15	45	<0.1	6	36	1.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH112	0.4-0.7	Fill: silty clay	6	<0.4	18	11	11	<0.1	3	9	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH112 BH113	0-0.2	Silty clay Fill: silty clay	5	<0.4	11 45	15 25	16 150	<0.1	7	37	<0.05 5.7	<0.5 0.99	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
BH113	0.5-0.7	Silty clay	<4	<0.4	15	13	11	<0.1	3	9	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH113	1.5-1.7	Silty clay	7	<0.4	20	21	16	<0.1	3	12	<0.05	<0.5	NA 10.4	NA	NA -0.4	NA -0.4	NA 10.1	NA -0.4	NA -0.4	NA 10.1	NA :0.1	NA NA
BH114 BH114 - [LAB_DUP]	0-0.1	Fill: silty clay Fill: silty clay	<4 <4	1	16 18	46 35	77 86	<0.1	16 16	89 86	26 16	3.6 2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	Not Detected NA
BH114	0.3-0.5	Fill: silty clay	6	<0.4	17	15	13	<0.1	4	14	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH114	1.8-2.0	Silty clay	7 <4	<0.4	17	16	15	<0.1	2	8	<0.05	<0.5	NA 10.4	NA	NA -0.4	NA -0.4	NA 10.4	NA -0.4	NA -0.4	NA 10.1	NA :0.1	NA NA
BH115 BH115	0.08-0.2	Fill: gravelly sand Fill: clayey sand	<4	<0.4	17 8	55 6	2 14	<0.1	100 6	40 20	<0.05 <0.05	<0.5 <0.5	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected Not Detected
BH115	0.8-1.0	Silty clay	<4	<0.4	13	16	9	<0.1	3	11	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH116	0.06-0.2	Fill: gravelly sand	<4	<0.4	32	79	2	<0.1	130	50	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH116 BH116	0.2-0.5	Fill: clayey sand Silty clay	<4 6	<0.4	10 16	10	11	<0.1	16 3	21 10	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH117	0.06-0.2	Fill: gravelly sand	<4	<0.4	16	64	2	<0.1	120	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH117 BH117	0.4-0.7 1.3-1.5	Fill: clayey sand Silty clay	<4 6	<0.4	13	6 17	17 12	<0.1	7	25 9	0.06 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH118	0.06-0.2	Fill: gravelly sand	<4	<0.4	16	67	2	<0.1	100	43	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH118 - [LAB_DUP]	0.06-0.2	Fill: gravelly sand	<4	<0.4	13	66	3	<0.1	92	40	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH118 BH118	0.2-0.4	Fill: clayey sand Silty clay	<4 5	<0.4	7 15	10	16 9	<0.1	3 5	17	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH119	0.07-0.2	Fill: gravelly sand	<4	<0.4	24	68	3	<0.1	120	55	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH119	0.2-0.5	Fill: clayey sand	<4	<0.4	11	18	14	<0.1	24	30	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH119 BH120	0.7-1.0	Silty clay Fill: gravelly sand	7	<0.4	18	30 87	14 2	<0.1	7 24	28	<0.05 6.1	<0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
BH120	0.2-0.5	Fill: clayey sand	<4	<0.4	11	14	11	<0.1	3	12	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH120	0.7-1.0	Silty clay	6	<0.4	16	13	13	<0.1	4	13	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH121 BH121 - [LAB_DUP]	0-0.2	Fill: silty clayey sand Fill: silty clayey sand		<0.4	34 20	29 25	35 38	<0.1	13 12	91 50	6.2	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	Not Detected NA
BH121	0.4-0.5	Silty clay	6	<0.4	16	16	12	<0.1	5	19	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH121	0.7-0.95	Silty clay	4	<0.4	15	16	15	<0.1	5	21	<0.05	<0.5	NA 10.4	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
BH122 BH122	0.01-0.16	Fill: gravelly sand Fill: gravelly sand	<4 <4	<0.4	10 14	70 9	14	<0.1	76 9	29	<0.05 <0.05	<0.5 <0.5	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected Not Detected
BH122	0.7-1.0	Silty clay	6	<0.4	13	15	12	<0.1	4	13	<0.05	<0.5	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA
BH123	0.08-0.2	Fill: gravelly sand	<4	<0.4	16	74	2	<0.1	100	42	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH123 BH123	0.2-0.5	Fill: clayey sand Silty clay	<4 6	<0.4	7 15	25	13 16	<0.1	3	18 17	0.4 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
BH124	0.05-0.15	Fill: gravelly sand	<4	<0.4	13	34	6	<0.1	79	34	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH124	0.2-0.5	Fill: clayey sand	<4	<0.4	9	8	18	<0.1	5	24	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH124 - [LAB_DUP] BH124	0.2-0.5	Fill: clayey sand Silty clay	<4 7	<0.4	19	21	13 19	<0.1	7	18	<0.05 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA
BH125	0.12-0.3	Fill: gravelly sand	<4	<0.4	8	110	4	<0.1	14	32	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH125	0.3-0.5	Fill: clayey sand	<4	<0.4	12	10	13	<0.1	15	21	0.54	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH125 BH126	0.7-1.0	Silty clay Fill: silty sand	6	<0.4	16	10	10 23	<0.1	6	12	<0.05 1.6	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
BH126	0.4-0.5	Fill: silty clay	<4	<0.4	15	12	10	<0.1	4	11	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH126	0.7-0.95	Silty clay	<4	<0.4	13	14	9	<0.1	4	12	<0.05	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SDUP107 SDUP108	-	Duplicate BH108 0-0.2 Duplicate BH107 0-0.2	5 8	<0.4 0.5	15 23	10 9	15 39	<0.1	4	7 24	<0.05 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SDUP109		Duplicate BH126 0-0.2	5	<0.4	16	12	22	<0.1	6	17	1.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
SDUP109 - [LAB_DUP]	-	Lab Dup	7	<0.4	18	9	22	<0.1	5	16	0.76	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
SDUP110 SDUP111	-	Duplicate BH102 0-0.2 Duplicate BH116 0.06-0.2	4 <4	<0.4	16 20	28 76	50 2	<0.1	24 120	49 45	0.2	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
SDUP112	-	Duplicate BH103 0.05-0.15	<4	<0.4	14	88	2	<0.1	130	48	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA NA
SDUP101	-	Duplicate BH104 1.7-2.0	<4	<0.4	11	13	11	<0.1	3	12	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SDUP101 - [LAB_DUP] SDUP103	-	Lab Dup Duplicate BH110 0-0.1	5 <4	<0.4	12 12	12 16	14 71	<0.1	8	59	NA 3.6	0.6	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.2	NA <0.1	NA <0.1	NA <0.1	NA NA
SDUP103 - [LAB_DUP]	-	Lab Dup	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	<0.1	NA NA	NA NA
SDUP104	-	Duplicate BH112 0-0.1	6	0.6	20	22	57	<0.1	8	49	2.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP105 SDUP106	-	Duplicate BH111 0-0.1 Duplicate BH113 0-0.2	5	0.8	23 16	33 23	56 49	<0.1	15 8	80 40	1.6 4.4	<0.5 0.7	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	NA NA
-		, .,											.5.1	U.1	J.2		J.,	.0.2	J		J.2	
	es		99	99	99	99	99	99	99	99	98	98	69	69	69	69	69	69	69	70	69	47 Not Detected
Total Number of Samples Maximum Value Concentration above the SAC		99 9 VALUE	99	45	110	150	0.2	140	99	98 26	3.6	69 <pql< td=""><td>69 <pql< td=""><td>69 <pql< td=""><td>69 <pql< td=""><td>69 <pql< td=""><td>0.8</td><td>69 <pql< td=""><td>70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	69 <pql< td=""><td>69 <pql< td=""><td>69 <pql< td=""><td>69 <pql< td=""><td>0.8</td><td>69 <pql< td=""><td>70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	69 <pql< td=""><td>69 <pql< td=""><td>69 <pql< td=""><td>0.8</td><td>69 <pql< td=""><td>70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	69 <pql< td=""><td>69 <pql< td=""><td>0.8</td><td>69 <pql< td=""><td>70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	69 <pql< td=""><td>0.8</td><td>69 <pql< td=""><td>70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<></td></pql<></td></pql<>	0.8	69 <pql< td=""><td>70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<></td></pql<>	70 <pql< td=""><td>69 <pql< td=""><td></td></pql<></td></pql<>	69 <pql< td=""><td></td></pql<>		

Concentration above the SAC Concentration above the PQL

VALUE Bold

SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

PQL - Envirolab Services					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene 0.5	Ethylbenzene	Xylenes 1	Naphthalene 1	Field PID Measurement ppm
SAC based on sand soil typ	e and 0-1m de	epth			260	NL	3	NL			NL	-
NEPM 2013 HSL Land Use	Category Sample		Depth				HSL-D:	COMMERCIAL/IND	USTRIAL			
Sample Reference	Depth	Sample Description	Category	Soil Category								
BH101 BH101 - [LAB_DUP]	0-0.1 0-0.1	Fill: silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	0.6 0.6
BH101	0.7-1.0	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	4.2
BH101 BH102	1.3-1.5 0-0.2	Silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.7
BH102	0.5-0.7	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.2
BH102 BH103	1.7-1.95 0.05-0.15	Silty clay Fill: gravelly sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	9.6 1.6
BH103	0.4-0.6	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	6.3
BH103 BH104	0.7-1.0 0-0.1	Silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	3.4 1.9
BH104	0.2-0.3	Fill: silty clay Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.5
BH104 - [LAB_DUP]	0.2-0.3	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.5
BH104 BH105	1.7-2.0 0-0.2	Silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	0 9.5
BH105	0.4-0.5	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	14.8
BH105 BH106	0.7-0.95 0.1-0.3	Silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	12.9 3.5
BH106	0.4-0.6	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	80.9
BH106 BH107	1.3-1.5 0-0.2	Silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.8 10.6
BH107	0.5-0.7	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	5.9
BH107	1.5-1.7	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	22.4
BH108 BH108 - [LAB_DUP]	0-0.2 0-0.2	Fill: silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	17.8 17.8
BH108	0.5-0.7	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	12.3
BH108 BH109	0.8-1.0	Silty clay	0m to <1m	Sand	<25	<50 <50	<0.2	<0.5	<1 <1	<1 <1	<1	12.2 0.9
BH109 BH109	0-0.15 0.5-0.8	Fill: silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	3.9
BH109	1.3-1.5	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.8
BH110 BH110	0-0.1 0.5-0.8	Fill: silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.5 3.9
BH110	1.3-1.5	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	4.4
BH111	0-0.1	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.4
BH111 - [LAB_DUP] BH111	0-0.1 0.2-0.5	Fill: silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	3.4 0.5
BH111	0.5-0.7	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2.9
BH112 BH112	0-0.1	Fill: silty clay Fill: silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	3.4 4.8
BH112	1.2-1.5	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	6.3
BH113	0-0.2	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	4.3
BH113 BH113	0.5-0.7 1.5-1.7	Silty clay Silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	14 13.1
BH114	0-0.1	Fill: silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	14.7
BH114 - [LAB_DUP] BH114	0-0.1 0.3-0.5	Fill: silty clay	0m to <1m	Sand	<25 <25	<50 <50	<0.2	<0.5 <0.5	<1 <1	<1 <1	<1	14.7 51.3
BH114	1.8-2.0	Fill: silty clay Silty clay	0m to <1m 0m to <1m	Sand Sand	<25	<50	<0.2 <0.2	<0.5	<1	<1	<1 <1	96.1
BH115	0.08-0.2	Fill: gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	4.3
BH115 BH115	0.3-0.5 0.8-1.0	Fill: clayey sand Silty clay	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	6.2
BH116	0.06-0.2	Fill: gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.1
BH116	0.2-0.5	Fill: clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.9
BH116 BH117	0.7-1.0 0.06-0.2	Silty clay Fill: gravelly sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	4.3 1.1
BH117	0.4-0.7	Fill: clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.9
BH117 BH118	1.3-1.5 0.06-0.2	Silty clay Fill: gravelly sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	2.6 0.4
BH118 - [LAB_DUP]	0.06-0.2	Fill: gravelly sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
BH118	0.2-0.4	Fill: clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH118 BH119	0.7-1.0 0.07-0.2	Silty clay Fill: gravelly sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.5 2.2
BH119	0.2-0.5	Fill: clayey sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.7
BH119	0.7-1.0	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.3
BH120 BH120	0.1-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	2.2 4.3
BH120	0.7-1.0	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.1
BH121 BH121 - [LAB_DUP]	0-0.2 0-0.2	Fill: silty clayey sand Fill: silty clayey sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	7.8 7.8
BH121	0.4-0.5	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	8.6
BH121 BH122	0.7-0.95 0.01-0.16	Silty clay Fill: gravelly sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	22.6 1.1
BH122	0.01-0.16	Fill: gravelly sand	0m to <1m	Sand	<25 <25	<50 <50	<0.2	<0.5	<1	<1	<1	1.6
BH122	0.7-1.0	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.1
BH123 BH123	0.08-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.4
BH123	0.7-1.0	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.9
BH124 BH124	0.05-0.15 0.2-0.5	Fill: gravelly sand Fill: clayey sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.7 1.4
вн124 ВН124 - [LAB_DUP]	0.2-0.5	Fill: clayey sand	0m to <1m	Sand	<25 <25	<50 <50	<0.2	<0.5	<1	<1	<1	1.4
BH124	0.6-1.0	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2.1
BH125 BH125	0.12-0.3 0.3-0.5	Fill: gravelly sand Fill: clayey sand	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1.2 1.4
BH125	0.7-1.0	Silty clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	13
BH126 BH126	0-0.2 0.4-0.5	Fill: silty sand	0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	10.8 9.7
BH126	0.4-0.5	Fill: silty clay Silty clay	0m to <1m 0m to <1m	Sand	<25 <25	<50 <50	<0.2	<0.5	<1	<1	<1	9.7
SDUP107	-	Duplicate BH108 0-0.2	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP108 SDUP109	-	Duplicate BH107 0-0.2 Duplicate BH126 0-0.2	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	-
SDUP109 - [LAB_DUP]	-	Lab Dup	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP110	-	Duplicate BH102 0-0.2	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP111 SDUP112	-	Duplicate BH116 0.06-0.2 Duplicate BH103 0.05-0.15	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	-
SDUP101	-	Duplicate BH104 1.7-2.0	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP103	-	Duplicate BH110 0-0.1	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP104 SDUP105	-	Duplicate BH112 0-0.1 Duplicate BH111 0-0.1	0m to <1m 0m to <1m	Sand Sand	<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	-
SDUP106	-	Duplicate BH113 0-0.2	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
					98	98	98	98	98			
Total Number of Sample	oc .									98	98	86

Copyright JK Environments

TABLE S3
SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS
All data in mg/kg unless stated otherwise

			C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4
PQL - Envirolab Services SAC - coarse			25 700	50 1000	100 3500	100 10000
AC - fine			800	1000	5000	10000
EPM 2013 Land Use Ca Sample Reference	Sample Depth	Soil Texture		COMMERCIAL	/INDUSTRIAL	
H101	0-0.1	Fine	<25	<50	120	<100
H101 - [LAB_DUP]	0-0.1	Fine	<25	<50	<100	<100
H101 H101	0.7-1.0	Fine	<25 <25	<50 <50	<100	<100 <100
H102	1.3-1.5 0-0.2	Fine Fine	<25	<50	<100 <100	<100
H102	0.5-0.7	Fine	<25	<50	<100	<100
H102	1.7-1.95	Fine	<25	<50	<100	<100
H103 H103	0.05-0.15 0.4-0.6	Coarse Fine	<25 <25	<50 <50	<100 <100	170 <100
H103	0.7-1.0	Fine	<25	<50	<100	<100
H104	0-0.1	Fine	<25	<50	<100	<100
H104	0.2-0.3	Fine	<25	<50	<100	<100
H104 - [LAB_DUP]	0.2-0.3	Fine	<25	<50	<100	<100
H104 H105	1.7-2.0 0-0.2	Fine Fine	<25 <25	<50 <50	<100 <100	<100 <100
H105	0.4-0.5	Fine	<25	<50	<100	<100
H105	0.7-0.95	Fine	<25	<50	<100	<100
H106	0.1-0.3	Fine	<25	<50	180	240
H106 H106	0.4-0.6 1.3-1.5	Fine Fine	<25 <25	<50 <50	<100 <100	<100 <100
H107	0-0.2	Fine	<25	<50	<100	<100
H107	0.5-0.7	Fine	<25	<50	<100	<100
H107	1.5-1.7	Fine	<25	<50	<100	<100
H108	0-0.2	Fine	<25	<50	<100	<100
H108 - [LAB_DUP] H108	0-0.2 0.5-0.7	Fine Fine	<25 <25	<50 <50	<100 <100	<100 <100
H108	0.8-1.0	Fine	<25	<50	<100	<100
H109	0-0.15	Fine	<25	<50	110	<100
H109	0.5-0.8	Fine	<25	<50	<100	<100
H109 H110	1.3-1.5 0-0.1	Fine Fine	<25 <25	<50 <50	<100 180	<100 130
BH110	0.5-0.8	Fine	<25	<50	<100	<100
H110	1.3-1.5	Fine	<25	<50	<100	<100
H111	0-0.1	Fine	<25	<50	170	130
H111 - [LAB_DUP]	0-0.1	Fine	<25	<50	160	120 <100
H111 H111	0.2-0.5 0.5-0.7	Fine Fine	<25 <25	<50 <50	<100 <100	<100 <100
H112	0-0.1	Fine	<25	<50	140	110
BH112	0.4-0.7	Fine	<25	<50	<100	<100
H112	1.2-1.5	Fine	<25	<50	<100	<100
H113 H113	0-0.2 0.5-0.7	Fine Fine	<25 <25	<50 <50	110 <100	<100 <100
H113	1.5-1.7	Fine	<25	<50	<100	<100
H114	0-0.1	Fine	<25	<50	290	180
H114 - [LAB_DUP]	0-0.1	Fine	<25	<50	290	180
H114 H114	0.3-0.5 1.8-2.0	Fine Fine	<25 <25	<50 <50	<100 <100	<100 <100
BH115	0.08-0.2	Coarse	<25	<50	<100	150
BH115	0.3-0.5	Coarse	<25	<50	<100	<100
BH115	0.8-1.0	Fine	<25	<50	<100	<100
BH116	0.06-0.2	Coarse	<25	<50	120	240
8H116 8H116	0.2-0.5 0.7-1.0	Coarse Fine	<25 <25	<50 <50	<100 <100	<100 <100
BH117	0.06-0.2	Coarse	<25	<50	<100	200
BH117	0.4-0.7	Coarse	<25	<50	<100	<100
BH117	1.3-1.5	Fine	<25	<50	<100	<100
BH118 BH118 - [LAB_DUP]	0.06-0.2 0.06-0.2	Coarse Coarse	<25 <25	<50 <50	<100 <100	130 130
BH118	0.2-0.4	Coarse	<25	<50	<100	<100
H118	0.7-1.0	Fine	<25	<50	<100	<100
H119	0.07-0.2	Coarse	<25	<50	<100	140
H119	0.2-0.5	Coarse	<25 <25	<50	<100	<100
H119 H120	0.7-1.0 0.1-0.2	Fine Coarse	<25	<50 <50	<100 380	<100 550
H120	0.2-0.5	Coarse	<25	<50	<100	<100
H120	0.7-1.0	Fine	<25	<50	<100	<100
H121	0-0.2	Coarse	<25	<50	140	130
H121 - [LAB_DUP] H121	0-0.2 0.4-0.5	Coarse Fine	<25 <25	<50 <50	160 <100	130 <100
H121	0.7-0.95	Fine	<25	<50	<100	<100
H122	0.01-0.16	Coarse	<25	<50	<100	140
H122	0.2-0.35	Coarse	<25	<50	<100	<100
H122 H123	0.7-1.0 0.08-0.2	Fine Coarse	<25 <25	<50 <50	<100 100	<100 190
H123	0.2-0.5	Coarse	<25	<50	<100	<100
H123	0.7-1.0	Fine	<25	<50	<100	<100
H124	0.05-0.15	Coarse	<25	<50	110	220
H124 H124 - [LAB_DUP]	0.2-0.5 0.2-0.5	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
H124 - [LAB_DOF] H124	0.6-1.0	Fine	<25	<50	<100	<100
H125	0.12-0.3	Coarse	<25	<50	720	1300
H125	0.3-0.5	Coarse	<25	<50	<100	<100
H125 H126	0.7-1.0 0-0.2	Fine Coarse	<25 <25	<50 <50	<100 <100	<100 <100
H126	0.4-0.5	Fine	<25	<50	<100	<100
H126	0.7-0.95	Fine	<25	<50	<100	<100
DUP107	-	Fine	<25	<50	<100	<100
DUP108	-	Fine	<25	<50	<100	<100
DUP109 DUP109 - [LAB_DUP]	-	Fine Fine	<25 <25	<50 <50	<100 <100	<100 <100
DUP110	-	Fine	<25	<50	<100	110
DUP111	-	Coarse	<25	<50	120	240
DUP112	-	Coarse	<25	<50	<100	210
DUP101 DUP103	-	Fine Fine	<25 <25	<50 <50	<100 <100	<100
DUP103 DUP104	-	Fine	<25 <25	<50 <50	<100 <100	<100 <100
DUP105	-	Fine	<25	<50	<100	<100
DUP106	-	Fine	<25	<50	<100	<100
						00
otal Number of Sampl laximum Value	es		98 <pql< td=""><td>98 <pql< td=""><td>98 720</td><td>98 1300</td></pql<></td></pql<>	98 <pql< td=""><td>98 720</td><td>98 1300</td></pql<>	98 720	98 1300

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

QL - Envirolab Services		C ₆ -C ₁₀	>C ₁₀ -C ₁₆ 50	>C ₁₆ -C ₃₄ 100	>C ₃₄ -C ₄₀	Benzene 0.2	0.5	Ethylbenzene 1	Xylenes 1	Naphthalene 1	
RC 2011 -Direct contact	Criteria	26,000	20,000	27,000	38,000	430	99,000	27,000	81,000	11,000	
te Use Sample Reference	Sample Depth			CC	OMMERCIAL/IND	OUSTRIAL - DIR	ECT SOIL CONTA	ACT			₩
1101	0-0.1	<25	<50	120	<100	<0.2	<0.5	<1	<1	<1	0
I101 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
1101	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	4
101	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
102 102	0-0.2 0.5-0.7	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
102	1.7-1.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
103	0.05-0.15	<25	<50	<100	170	<0.2	<0.5	<1	<1	<1	
103	0.4-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
103	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1104	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1104	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1104 - [LAB_DUP]	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1104	1.7-2.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	-
1105	0-0.2	<25	<50	<100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	<1	1
1105 1105	0.4-0.5 0.7-0.95	<25 <25	<50 <50	<100 <100	<100	<0.2	<0.5	<1	<1 <1	<1 <1	1
1106	0.1-0.3	<25	<50	180	240	<0.2	<0.5	<1	<1	<1	
1106	0.4-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	8
1106	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H107	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
1107	0.5-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1107	1.5-1.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
1108	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
H108 - [LAB_DUP]	0-0.2	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	1
1108	0.5-0.7	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	1
1108 1109	0.8-1.0 0-0.15	<25 <25	<50 <50	<100 110	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1
1109	0.5-0.8	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	
1109	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1110	0-0.1	<25	<50	180	130	<0.2	<0.5	<1	<1	<1	
1110	0.5-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1110	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1111	0-0.1	<25	<50	170	130	<0.2	<0.5	<1	<1	<1	
H111 - [LAB_DUP]	0-0.1	<25	<50	160	120	<0.2	<0.5	<1	<1	<1	
H111	0.2-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H111	0.5-0.7	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	
H112 H112	0-0.1 0.4-0.7	<25 <25	<50 <50	140 <100	110 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
H112	1.2-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1113	0-0.2	<25	<50	110	<100	<0.2	<0.5	<1	<1	<1	
1113	0.5-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1113	1.5-1.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
H114	0-0.1	<25	<50	290	180	<0.2	<0.5	<1	<1	<1	1
H114 - [LAB_DUP]	0-0.1	<25	<50	290	180	<0.2	<0.5	<1	<1	<1	1
H114	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	5
H114	1.8-2.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	9
H115	0.08-0.2	<25	<50	<100	150	<0.2	<0.5	<1	<1	<1	
H115	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	.
H115	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
H116 H116	0.06-0.2 0.2-0.5	<25 <25	<50 <50	120 <100	240 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
H116	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H117	0.06-0.2	<25	<50	<100	200	<0.2	<0.5	<1	<1	<1	
H117	0.4-0.7	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H117	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1118	0.06-0.2	<25	<50	<100	130	<0.2	<0.5	<1	<1	<1	
H118 - [LAB_DUP]	0.06-0.2	<25	<50	<100	130	<0.2	<0.5	<1	<1	<1	
1118	0.2-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1118	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	_
1119	0.07-0.2	<25	<50	<100	140	<0.2	<0.5	<1	<1	<1	
1119	0.2-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
1119 1120	0.7-1.0 0.1-0.2	<25 <25	<50 <50	<100 380	<100 550	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
H120 H120	0.1-0.2	<25 <25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	
1120	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1121	0-0.2	<25	<50	140	130	<0.2	<0.5	<1	<1	<1	
H121 - [LAB_DUP]	0-0.2	<25	<50	160	130	<0.2	<0.5	<1	<1	<1	
1121	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1121	0.7-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
1122	0.01-0.16	<25	<50	<100	140	<0.2	<0.5	<1	<1	<1	
1122	0.2-0.35	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H122	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1 3
H123	0.08-0.2	<25	<50 <50	100	190	<0.2	<0.5	<1	<1	<1	
H123 H123	0.2-0.5 0.7-1.0	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	
1123 1124	0.05-0.15	<25	<50 <50	110	220	<0.2	<0.5	<1	<1	<1	
1124 1124	0.2-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H124 - [LAB_DUP]	0.2-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H124	0.6-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H125	0.12-0.3	<25	<50	720	1300	<0.2	<0.5	<1	<1	<1	
1125	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
H125	0.7-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1126	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
1126	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
1126	0.7-0.95	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
UP107	-	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	1
DUP108 DUP109	-	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1 <1	1
DUP109 - [LAB_DUP]	-	<25 <25	<50 <50	<100 <100	<100	<0.2	<0.5	<1	<1	<1	1
OUP109 - [LAB_DUP]	-	<25	<50 <50	<100	110	<0.2	<0.5	<1	<1	<1	1
OUP111	-	<25	<50	120	240	<0.2	<0.5	<1	<1	<1	1
DUP112	-	<25	<50	<100	210	<0.2	<0.5	<1	<1	<1	
DUP101	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
DUP103	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
DUP104	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
DUP105	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
DUP106	-	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	
											₩
otal Number of Sample aximum Value	S	98	98 < BOL	98	98 1300	98 <pql< td=""><td>98 <pql< td=""><td>98 <pql< td=""><td>98 <pql< td=""><td>98 <pql< td=""><td>9</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	98 <pql< td=""><td>98 <pql< td=""><td>98 <pql< td=""><td>98 <pql< td=""><td>9</td></pql<></td></pql<></td></pql<></td></pql<>	98 <pql< td=""><td>98 <pql< td=""><td>98 <pql< td=""><td>9</td></pql<></td></pql<></td></pql<>	98 <pql< td=""><td>98 <pql< td=""><td>9</td></pql<></td></pql<>	98 <pql< td=""><td>9</td></pql<>	9
		<pql< td=""><td><pql< td=""><td>720</td><td></td><td>SPUII</td><td></td><td></td><td>SPUL</td><td></td><td></td></pql<></td></pql<>	<pql< td=""><td>720</td><td></td><td>SPUII</td><td></td><td></td><td>SPUL</td><td></td><td></td></pql<>	720		SPUII			SPUL		

TABLE S5 ASBESTOS QUANTIFICATION - LABORATORY RESULTS HIL-D:Commercial/Industrial

Lab						Total		ACM	FA and AF	ACM	FA and
Report Number	Sample refeference	Sample Depth	Sample Mass (g)	Asbestos ID in soil (AS4964) >0.1g/kg	Trace Analysis	Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	>7mm Estimation	Estimation	>7mm Estimation	Estimat
								(g)		%(w/w)	0.001
								I		0.05	0.001
38230	BH101	0-0.1	600.83	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
38230	BH101	0.7-1.0	533.39	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH102	0-0.2	840.63	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH103	0.05-0.15	454.02	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH103	0.4-0.6	326.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH104	0-0.1	334.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH104	0.2-0.3	413.7	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.0
38230	BH105	0-0.2	660.06	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.0
38230	BH105	0.4-0.5	614.57	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH106	0.1-0.3	250.51	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH106	0.4-0.6	525.26	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH107	0-0.2	510.68	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH108	0-0.2	591.45	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH109	0-0.15	560.71	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH109	0.5-0.8	434.06	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH110	0-0.1	575.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH110	0.5-0.8	508.37	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH111	0-0.1	532.29	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH112	0-0.1	562.9		No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
				No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected							
38230	BH112	0.4-0.7	350.43	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH113	0-0.2	517.3	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH114	0-0.1	878.88	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH114	0.3-0.5	760.36	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH115	0.08-0.2	524.96	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH115	0.3-0.5	557.58	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH116	0.06-0.2	879.73	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH116	0.2-0.5	602.6	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH117	0.06-0.2	940.95	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH117	0.4-0.7	582.29	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
338230	BH118	0.06-0.2	853.43	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH118	0.2-0.4	542.33	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.0
38230	BH119	0.07-0.2	732.72	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.0
38230	BH119	0.2-0.5	646.05	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH120	0.1-0.2	656.9	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH120	0.2-0.5	279.78	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH121	0-0.2	832.39	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.0
38230	BH121	0.4-0.5	626.13	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
338230	BH122	0.01-0.16	798.09	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH122	0.2-0.35	700.86	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH123	0.08-0.2	830.9	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH123	0.2-0.5	823.71	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH124	0.05-0.15	534.88	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
38230	BH124	0.2-0.5	717.24	No asbestos detected at reporting limit of 0.1g/kg. Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	_	<0.01	<0.0
									_		_
38230	BH125	0.12-0.3	786.19	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_		<0.01	<0.0
38230	BH125	0.3-0.5	750.37	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	_	-	<0.01	<0.0
338230	BH126	0-0.2	589	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.0
38230	BH126	0.4-0.5	556.14	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	_	<0.01	<0.0

Concentration above the SAC VALUE

TABLE S6 (Page 1 of 2)
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILS AND ESLS
All data in mg/kg unless stated otherwise

Land Use Category									AGED HEAV	Y METALS-EILs		CON	MMERCIAL/INDUSTE						ESLs				
				рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Services				-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Con Sample Reference	Sample	Sample Description	Soil Texture	-	-	-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
BH101	Depth 0-0.1	Fill: silty clay	Fine	NA	NA	NA	<4	13	20	120	17	48	<1	<0.1	<25	<50	120	<100	<0.2	<0.5	<1	<1	0.1
BH101 - [LAB_DUP] BH101	0-0.1 0.7-1.0	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	4 <4	21 16	18 12	120 14	17 2	48 4	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.2 <0.05
3H101	1.3-1.5	Silty clay	Fine	NA	NA	NA	<4	7	14	7	2	6	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
3H102 3H102	0-0.2 0.5-0.7	Fill: silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	<4 <4	15 14	27 14	49 10	20	43	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.2 <0.05
3H102	1.7-1.95	Silty clay	Fine	NA.	NA	NA NA	6	12	15	15	4	11	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH103 BH103	0.05-0.15 0.4-0.6	Fill: gravelly sand	Coarse Fine	NA NA	19.8 NA	NA NA	<4 5	18 17	73 14	2 10	140 3	50 6	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	170 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1	<0.05 <0.05
BH103	0.7-1.0	Fill: silty clay Silty clay	Fine	NA NA	NA NA	NA NA	6	13	17	14	2	6	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1 <1	<0.05
BH104 BH104	0-0.1 0.2-0.3	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	7 <4	20 10	24	71 15	8 2	68 2	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	0.3 < 0.05
BH104 - [LAB_DUP]	0.2-0.3	Fill: silty clay Fill: silty clay	Fine	NA NA	NA NA	NA NA	<4	9	3	11	2	3	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1 <1	<1 <1	<0.05
3H104	1.7-2.0	Silty clay	Fine	NA NA	NA NA	NA	5	11	15 9	16 29	2	6	<1	NA <0.1	<25	<50 <50	<100	<100	<0.2 <0.2	<0.5 <0.5	<1	<1	<0.05
3H105 3H105	0-0.2	Fill: silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	9	21 16	16	11	3	21 10	<1 <1	<0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5	<1 <1	<1 <1	0.3 < 0.05
BH105	0.7-0.95	Silty clay	Fine	NA	NA	NA	<4	12	12	12	2	8	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH106 BH106	0.1-0.3 0.4-0.6	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	6 <4	16 16	20 12	20 9	3	15 7	<1	<0.1 <0.1	<25 <25	<50 <50	180 <100	240 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.5 < 0.05
BH106	1.3-1.5	Silty clay	Fine	NA	NA	NA	<4	7	6	5	1	4	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH107 BH107	0-0.2 0.5-0.7	Fill: silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	5	15 11	10 13	16 13	1	6	<1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
BH107	1.5-1.7	Silty clay	Fine	NA	NA	NA	<4	5	8	6	2	3	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH108 BH108 - [LAB_DUP]	0-0.2	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	9	25 25	8	42 40	3	20 22	<1 <1	0.4	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	<0.05 <0.05
BH108 - [LAB_DUP] BH108	0-0.2 0.5-0.7	Fill: silty clay Silty clay	Fine	NA NA	NA NA	NA NA	4	12	10	10	2	6	<1	<0.1	<25	<50 <50	<100	<100 <100	<0.2	<0.5	<1 <1	<1 <1	<0.05
BH108	0.8-1.0	Silty clay	Fine	NA NA	NA	NA	<4	12	10	11	2	6	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH109 BH109	0-0.15 0.5-0.8	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	5 4	14 14	21 12	59 12	11 2	76 6	<1 <1	<0.1 <0.1	<25 <25	<50 <50	110 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.2 <0.05
BH109	1.3-1.5	Silty clay	Fine	NA	NA	NA	<4	8	11	8	2	7	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH110 BH110	0-0.1 0.5-0.8	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	<4 4	10 17	17 11	74 13	7	56 10	<1 <1	<0.1 <0.1	<25 <25	<50 <50	180 <100	130 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.3 < 0.05
BH110	1.3-1.5	Silty clay	Fine	NA	NA	NA	<4	8	6	5	1	4	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH111	0-0.1	Fill: silty clay	Fine	NA NA	NA	NA	5	18 19	28	50	12	70	<1	<0.1	<25	<50	170 160	130	<0.2	<0.5	<1	<1	0.2
BH111 - [LAB_DUP] BH111	0-0.1 0.2-0.5	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	5	16	33 10	54 12	13 3	79 10	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100	120 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.2 <0.05
BH111	0.5-0.7	Silty clay	Fine	NA	NA	NA	4	14	14	11	3	11	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH112 BH112	0-0.1	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	5 6	20 18	15 11	45 11	6 3	36 9	<1	<0.1 <0.1	<25 <25	<50 <50	140 <100	110 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.2 <0.05
BH112	1.2-1.5	Silty clay	Fine	NA	NA	NA	5	11	15	16	2	8	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH113 BH113	0-0.2 0.5-0.7	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	4 <4	45 15	25 13	150 11	7	37 9	<1 <1	<0.1 <0.1	<25 <25	<50 <50	110 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	0.68 < 0.05
BH113	1.5-1.7	Silty clay Silty clay	Fine	NA NA	NA NA	NA NA	7	20	21	16	3	12	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1 <1	<1 <1	<0.05
BH114	0-0.1	Fill: silty clay	Fine	NA	NA	NA	<4	16 18	46	77	16	89	<1	<0.1	<25	<50	290	180	<0.2	<0.5	<1	<1	2.4
BH114 - [LAB_DUP] BH114	0-0.1 0.3-0.5	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	<4 6	18	35 15	86 13	16 4	86 14	<1	<0.1 <0.1	<25 <25	<50 <50	290 <100	180 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	1.7 <0.05
BH114	1.8-2.0	Silty clay	Fine	NA	NA	NA	7	17	16	15	2	8	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH115 BH115	0.08-0.2 0.3-0.5	Fill: gravelly sand Fill: clayey sand	Coarse Coarse	NA NA	19.8 NA	NA NA	<4 <4	17 8	55 6	2 14	100 6	40 20	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	150 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
BH115	0.8-1.0	Silty clay	Fine	NA	NA	NA	<4	13	16	9	3	11	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH116 BH116	0.06-0.2 0.2-0.5	Fill: gravelly sand	Coarse	NA NA	19.8 NA	NA NA	<4 <4	32 10	79 10	2 11	130 16	50 21	<1 <1	<0.1 <0.1	<25 <25	<50 <50	120 <100	240 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	<0.05 <0.05
BH116	0.7-1.0	Fill: clayey sand Silty clay	Coarse Fine	NA NA	NA NA	NA NA	6	16	18	11	3	10	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1 <1	<1 <1	<0.05
BH117	0.06-0.2	Fill: gravelly sand	Coarse	NA	19.8	NA	<4	16	64	2	120	42	<1	<0.1	<25	<50	<100	200	<0.2	<0.5	<1	<1	<0.05
BH117 BH117	0.4-0.7 1.3-1.5	Fill: clayey sand Silty clay	Coarse Fine	NA NA	NA NA	NA NA	<4 6	8 13	17	17 12	7	25 9	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.06 <0.05
BH118	0.06-0.2	Fill: gravelly sand	Coarse	NA	19.8	NA	<4	16	67	2	100	43	<1	<0.1	<25	<50	<100	130	<0.2	<0.5	<1	<1	<0.05
BH118 - [LAB_DUP] BH118	0.06-0.2 0.2-0.4	Fill: gravelly sand Fill: clayey sand	Coarse Coarse	NA NA	19.8 NA	NA NA	<4 <4	7	66 10	3 16	92 3	40 17	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	130 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
BH118	0.7-1.0	Silty clay	Fine	NA.	NA	NA	5	15	19	9	5	17	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH119 BH119	0.07-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	Coarse Coarse	NA NA	19.8 NA	NA NA	<4 <4	24 11	68 18	3 14	120 24	55 30	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	140 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
BH119	0.7-1.0	Silty clay	Fine	NA	NA	NA	7	18	30	14	7	28	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH120 BH120	0.1-0.2 0.2-0.5	Fill: gravelly sand	Coarse	NA NA	19.8	NA NA	<4 <4	6	87 14	2	24 3	29 12	<1	<0.1 <0.1	<25 <25	<50 <50	380 <100	550 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	0.65 < 0.05
BH120	0.7-1.0	Fill: clayey sand Silty clay	Coarse Fine	NA NA	NA NA	NA NA	6	11 16	13	11	4	13	<1 <1	NA	<25	<50	<100	<100	<0.2	<0.5	<1 <1	<1 <1	<0.05
BH121	0-0.2	Fill: silty clayey sand	Coarse	NA	NA	NA	8	34	29	35	13	91	<1	<0.1	<25	<50	140	130	<0.2	<0.5	<1	<1	0.5
BH121 - [LAB_DUP] BH121	0-0.2 0.4-0.5	Fill: silty clayey sand Silty clay	Coarse Fine	NA NA	NA NA	NA NA	5 6	20 16	25 16	38 12	12 5	50 19	<1 <1	<0.1 <0.1	<25 <25	<50 <50	160 <100	130 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	0.7 <0.05
BH121	0.7-0.95	Silty clay	Fine	NA	NA	NA	4	15	16	15	5	21	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH122 BH122	0.01-0.16 0.2-0.35	Fill: gravelly sand Fill: gravelly sand	Coarse Coarse	NA NA	19.8 19.8	NA NA	<4 <4	10 14	70 9	14	76 9	41 29	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	140 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 <0.05
BH122	0.7-1.0	Silty clay	Fine	NA	NA	NA	6	13	15	12	4	13	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH123 BH123	0.08-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	Coarse Coarse	NA NA	19.8 NA	NA NA	<4 <4	16 7	74 5	2 13	100 5	42 18	<1 <1	<0.1 <0.1	<25 <25	<50 <50	100 <100	190 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 0.06
BH123	0.7-1.0	Silty clay	Fine	NA	NA	NA	6	15	25	16	3	17	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH124	0.05-0.15	Fill: gravelly sand	Coarse	NA NA	19.8	NA	<4	13	34	6	79	34	<1	<0.1	<25	<50	110	220	<0.2	<0.5	<1	<1	<0.05
BH124 BH124 - [LAB_DUP]	0.2-0.5 0.2-0.5	Fill: clayey sand Fill: clayey sand	Coarse Coarse	NA NA	NA NA	NA NA	<4 <4	9	6	18 13	5 8	24 18	<1 <1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
BH124	0.6-1.0	Silty clay	Fine	NA	NA	NA	7	19	21	19	7	18	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH125 BH125	0.12-0.3 0.3-0.5	Fill: gravelly sand Fill: clayey sand	Coarse Coarse	NA NA	19.8 NA	NA NA	<4 <4	8 12	110 10	13	14 15	32 21	<1 <1	<0.1 <0.1	<25 <25	<50 <50	720 <100	1300 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 0.06
3H125	0.7-1.0	Silty clay	Fine	NA	NA	NA	6	16	14	10	4	12	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
3H126	0-0.2	Fill: silty sand	Coarse	NA NA	NA NA	NA NA	4	13 15	10 12	23 10	6 4	18 11	<1	<0.1	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	0.2 <0.05
3H126 3H126	0.4-0.5 0.7-0.95	Fill: silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	<4 <4	13	12	9	4	11	<1 <1	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05
SDUP107	-	Duplicate BH108 0-0.2	Fine	NA	NA	NA	5	15	10	15	2	7	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
SDUP108 SDUP109	-	Duplicate BH107 0-0.2 Duplicate BH126 0-0.2	Fine Fine	NA NA	NA NA	NA NA	8 5	23 16	9 12	39 22	6	24 17	<1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<0.05 0.1
SDUP109 - [LAB_DUP]	-	Lab Dup	Fine	NA	NA	NA	7	18	9	22	5	16	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.1
DUP110	-	Duplicate BH102 0-0.2	Fine	NA NA	NA 10.8	NA NA	4	16 20	28	50	24	49	<1	<0.1	<25	<50 <50	<100	110	<0.2	<0.5	<1	<1	0.2
SDUP111 SDUP112	-	Duplicate BH116 0.06-0.2 Duplicate BH103 0.05-0.15	Fine Fine	NA NA	19.8 19.8	NA NA	<4 <4	20 14	76 88	2	120 130	45 48	<1 <1	<0.1 <0.1	<25 <25	<50 <50	120 <100	240 210	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<0.05 <0.05
SDUP101	-	Duplicate BH104 1.7-2.0	Fine	NA	NA	NA	<4	11	13	11	3	12	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
SDUP101 - [LAB_DUP] SDUP103	-	Lab Dup Duplicate BH110 0-0.1	Fine Fine	NA NA	NA NA	NA NA	5 <4	12 12	12 16	14 71	2 8	8 59	NA <1	NA <0.1	NA <25	NA <50	NA <100	NA <100	NA <0.2	NA <0.5	NA <1	NA <1	NA 0.38
SDUP104	-	Duplicate BH112 0-0.1	Fine	NA	NA	NA	6	20	22	57	8	49	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.38
SDUP105	-	Duplicate BH111 0-0.1	Fine	NA NA	NA	NA	6	23	33	56	15	80	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.19
SDUP106	*	Duplicate BH113 0-0.2	Fine	NA	NA	NA	5	16	23	49	8	40	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.43
Total Number of Samples	s			0	15	0	99	99	99	99	99 140	99 91	98 <pql< td=""><td>69 0.4</td><td>98 <pql< td=""><td>98 <pql< td=""><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td></pql<></td></pql<></td></pql<>	69 0.4	98 <pql< td=""><td>98 <pql< td=""><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td></pql<></td></pql<>	98 <pql< td=""><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td><td>98</td></pql<>	98	98	98	98	98	98	98
Maximum Value				NA	19.8	NA	9	45	110	150							720	1300	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2.4</td></pql<></td></pql<>	<pql< td=""><td>2.4</td></pql<>	2.4

Concentration above the SAC
Concentration above the PQL
The guideline corresponding to the elevated value is highlighted in grey in the following EIL and ESL Assessment Criteria Table

EIL AND ESL ASSESSMENT CRITERIA

TABLE S6 (Page 2 of 2)
SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS
All data in mg/kg unless stated otherwise

Sample Reference	Sample Depth	Sample Description	Soil Texture	рН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
BH101	0-0.1	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH101 - [LAB_DUP] BH101	0-0.1 0.7-1.0	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640 640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH101	1.3-1.5	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH102 BH102	0-0.2 0.5-0.7	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60	230 230	370 370	640 640	215	170 170	2500 2500	6600 6600	95	135 135	185 185	95	72
BH102	1.7-1.95	Silty clay Silty clay	Fine	NA NA	NA NA	NA NA	160	320	110	2000	60	230	370		215 215	170	2500	6600	95 95	135	185	95 95	72 72
BH103	0.05-0.15	Fill: gravelly sand	Coarse	NA	19.8	NA	160	320	110	2000	460	230	370	640	215	170	1700	3300	75	135	165	180	72
BH103 BH103	0.4-0.6 0.7-1.0	Fill: silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH104	0-0.1	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH104 BH104 - [LAB_DUP]	0.2-0.3	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640 640	215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH104 - [LAB_DOF]	0.2-0.3 1.7-2.0	Fill: silty clay Silty clay	Fine	NA	NA NA	NA NA	160	320	110	2000	60	230	370		215 215	170	2500	6600	95	135	185	95	72
BH105	0-0.2	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH105 BH105	0.4-0.5 0.7-0.95	Silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH106	0.1-0.3	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH106 BH106	0.4-0.6 1.3-1.5	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH107	0-0.2	Silty clay Fill: silty clay	Fine	NA	NA NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH107	0.5-0.7	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH107 BH108	1.5-1.7 0-0.2	Silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000	60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH108 - [LAB_DUP]	0-0.2	Fill: silty clay	Fine	NA	NA NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH108	0.5-0.7	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH108 BH109	0.8-1.0 0-0.15	Silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH109	0.5-0.8	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH109	1.3-1.5	Silty clay	Fine	NA NA	NA NA	NA NA	160	320	110	2000	60	230	370	 640	215	170	2500	6600	95 95	135	185	95 95	72
BH110 BH110	0-0.1 0.5-0.8	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640 640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH110	1.3-1.5	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH111 BH111 - [LAB_DUP]	0-0.1 0-0.1	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640 640	215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH111 - [LAB_DOP] BH111	0.2-0.5	Fill: silty clay Fill: silty clay	Fine	NA NA	NA NA	NA NA	160	320	110	2000	60	230	370	640	215 215	170	2500	6600	95	135	185	95	72
BH111	0.5-0.7	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH112 BH112	0-0.1	Fill: silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60	230 230	370 370	640 640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH112	1.2-1.5	Fill: silty clay Silty clay	Fine	NA	NA NA	NA NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH113	0-0.2	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH113 BH113	0.5-0.7 1.5-1.7	Silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000	60 60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH114	0-0.1	Fill: silty clay	Fine	NA	NA NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH114 - [LAB_DUP]	0-0.1	Fill: silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH114 BH114	0.3-0.5 1.8-2.0	Fill: silty clay Silty clay	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60	230 230	370 370	640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
BH115	0.08-0.2	Fill: gravelly sand	Coarse	NA	19.8	NA	160	320	110	2000	460	230	370	640	215	170	1700	3300	75	135	165	180	72
BH115	0.3-0.5	Fill: clayey sand	Coarse	NA NA	NA NA	NA	160	320	110	2000	60	230	370 370	640	215	170	1700	3300	75	135 135	165	180 95	72
BH115 BH116	0.8-1.0 0.06-0.2	Silty clay Fill: gravelly sand	Fine Coarse	NA NA	19.8	NA NA	160 160	320 320	110 110	2000 2000	460	230 230	370	640	215 215	170 170	2500 1700	6600 3300	95 75	135	185 165	180	72 72
BH116	0.2-0.5	Fill: clayey sand	Coarse	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75	135	165	180	72
BH116 BH117	0.7-1.0 0.06-0.2	Silty clay Fill: gravelly sand	Fine Coarse	NA NA	NA 19.8	NA NA	160 160	320 320	110 110	2000 2000	60 460	230 230	370 370	640	215 215	170 170	2500 1700	6600 3300	95 75	135 135	185 165	95 180	72 72
BH117	0.4-0.7	Fill: clayey sand	Coarse	NA	NA NA	NA NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75	135	165	180	72
BH117	1.3-1.5	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH118 BH118 - [LAB_DUP]	0.06-0.2 0.06-0.2	Fill: gravelly sand Fill: gravelly sand	Coarse	NA NA	19.8 19.8	NA NA	160 160	320 320	110 110	2000 2000	460 460	230 230	370 370	640 640	215 215	170 170	1700 1700	3300 3300	75 75	135 135	165 165	180 180	72 72
BH118	0.2-0.4	Fill: clayey sand	Coarse	NA	NA NA	NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75	135	165	180	72
BH118	0.7-1.0	Silty clay	Fine	NA	NA 10.0	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH119 BH119	0.07-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	Coarse	NA NA	19.8 NA	NA NA	160 160	320 320	110 110	2000 2000	460 60	230 230	370 370	640 640	215 215	170 170	1700 1700	3300 3300	75 75	135 135	165 165	180 180	72 72
BH119	0.7-1.0	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH120 BH120	0.1-0.2	Fill: gravelly sand	Coarse	NA NA	19.8	NA NA	160 160	320 320	110 110	2000 2000	460 60	230 230	370 370	640	215	170 170	1700	3300 3300	75	135 135	165 165	180 180	72
BH120	0.2-0.5 0.7-1.0	Fill: clayey sand Silty clay	Coarse Fine	NA	NA NA	NA NA	160	320	110	2000	60	230	370	640	215 215	170	1700 2500	6600	75 95	135	185	95	72 72
BH121	0-0.2	Fill: silty clayey sand	Coarse	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75	135	165	180	72
BH121 - [LAB_DUP] BH121	0-0.2 0.4-0.5	Fill: silty clayey sand Silty clay	Coarse Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60	230 230	370 370	640 640	215 215	170 170	1700 2500	3300 6600	75 95	135 135	165 185	180 95	72 72
BH121	0.7-0.95	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
BH122	0.01-0.16	Fill: gravelly sand	Coarse	NA	19.8	NA NA	160	320	110	2000	460	230	370	640	215	170	1700	3300	75	135	165	180	72
BH122 BH122	0.2-0.35 0.7-1.0	Fill: gravelly sand Silty clay	Coarse Fine	NA NA	19.8 NA	NA NA	160 160	320 320	110 110	2000	460 60	230 230	370 370	640	215 215	170 170	1700 2500	3300 6600	75 95	135 135	165 185	180 95	72 72
BH123	0.08-0.2	Fill: gravelly sand	Coarse	NA	19.8	NA	160	320	110	2000	460	230	370	640	215	170	1700	3300	75	135	165	180	72
BH123	0.2-0.5	Fill: clayey sand	Coarse	NA NA	NA NA	NA NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75 05	135	165	180	72
BH123 BH124	0.7-1.0 0.05-0.15	Silty clay Fill: gravelly sand	Fine Coarse	NA NA	NA 19.8	NA NA	160 160	320 320	110 110	2000 2000	60 460	230 230	370 370	640	215 215	170 170	2500 1700	6600 3300	95 75	135 135	185 165	95 180	72 72
BH124	0.2-0.5	Fill: clayey sand	Coarse	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75	135	165	180	72
BH124 - [LAB_DUP] BH124	0.2-0.5	Fill: clayey sand	Coarse	NA NA	NA NA	NA NA	160 160	320 320	110	2000 2000	60 60	230 230	370 370	640	215	170	1700 2500	3300 6600	75 95	135	165 185	180 95	72
BH125	0.6-1.0 0.12-0.3	Silty clay Fill: gravelly sand	Fine Coarse	NA NA	19.8	NA NA	160	320	110 110	2000	460	230	370	640	215 215	170 170	2500 1700	3300	95 75	135 135	185 165	180	72 72
BH125	0.3-0.5	Fill: clayey sand	Coarse	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	1700	3300	75	135	165	180	72
BH125 BH126	0.7-1.0 0-0.2	Silty clay Fill: silty sand	Fine Coarse	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370	640	215 215	170 170	2500 1700	6600 3300	95 75	135 135	185 165	95 180	72 72
BH126	0.4-0.5	Fill: silty clay	Fine	NA	NA NA	NA NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
BH126	0.7-0.95	Silty clay	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
SDUP107 SDUP108	-	Duplicate BH108 0-0.2 Duplicate BH107 0-0.2	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370 370		215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
SDUP108	-	Duplicate BH126 0-0.2	Fine	NA	NA	NA NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
SDUP109 - [LAB_DUP]	-	Lab Dup	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
SDUP110 SDUP111	-	Duplicate BH102 0-0.2 Duplicate BH116 0.06-0.2	Fine Fine	NA NA	NA 19.8	NA NA	160 160	320 320	110 110	2000 2000	60 460	230 230	370 370	640 640	215 215	170 170	2500 2500	6600 6600	95 95	135 135	185 185	95 95	72 72
SDUP111 SDUP112	-	Duplicate BH103 0.05-0.15		NA	19.8	NA NA	160	320	110	2000	460	230	370	640	215	170	2500	6600	95	135	185	95	72
SDUP101	-	Duplicate BH104 1.7-2.0	Fine	NA	NA	NA	160	320	110	2000	60	230	370		215	170	2500	6600	95	135	185	95	72
SDUP101 - [LAB_DUP] SDUP103		Lab Dup Duplicate BH110 0-0.1	Fine Fine	NA NA	NA NA	NA NA	160 160	320 320	110 110	2000 2000	60 60	230 230	370	640	215	170	2500	6600	95	135	185	 95	72
SDUP104	-	Duplicate BH112 0-0.1	Fine	NA	NA	NA NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
SDUP105	-	Duplicate BH111 0-0.1	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72
SDUP106	-	Duplicate BH113 0-0.2	Fine	NA	NA	NA	160	320	110	2000	60	230	370	640	215	170	2500	6600	95	135	185	95	72

TABLE S7

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data	in mg/kg	unless stated	otherwise
----------	----------	---------------	-----------

						HEAVY	METALS					AHs			PESTICIDES		Total			TRH					MPOUNDS		
			Arsenic	Cadmium	Chromiun	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P	Total Endosulfans	Chloropyrifos	Total Moderately Harmful	Total Scheduled	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total C ₁₀ -C ₃₆	Benzene	Toluene	Ethyl benzene	Total Xylenes	ASBESTOS FIBRES
PQL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
General Solid Waste CT1			100	20	100	NSL	100	4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
General Solid Waste SCC1 Restricted Solid Waste CT2	2		500 400	100 80	1900 400	NSL	1500 400	50 16	1050 160	NSL NSL	200 800	3.2	108 240	7.5	250 1000	50	50 50	650 2600		NSL NSL		10,000	18 40	518 1,152	1,080 2,400	1,800 4,000	-
Restricted Solid Waste SCC			2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	
Sample Reference	Sample	Sample Description																									
BH101	0-0.1	Fill: silty clay	<4	<0.4	13	20	120	<0.1	17	48	0.86	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH101 - [LAB_DUP]	0-0.1	Fill: silty clay	4	<0.4	21	18	120	<0.1	17	48	1.4	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH101 BH101	0.7-1.0 1.3-1.5	Fill: silty clay Silty clay	<4 <4	<0.4	16 7	12 14	7	<0.1 <0.1	2	6	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	Not Detected NA
BH102 BH102	0-0.2	Fill: silty clay Silty clay	<4 <4	<0.4	15 14	27 14	49 10	<0.1	20	43	2.2 <0.05	0.2 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH102 BH103	1.7-1.95 0.05-0.15	Silty clay	6	<0.4	12	15	15 2	<0.1 <0.1	140	11	<0.05	<0.05 <0.05	NA	NA	NA	NA <0.1	NA	<25	<50 <50	<100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	NA Nat Datastad
BH103	0.4-0.6	Fill: gravelly sand Fill: silty clay	<4 5	<0.4 <0.4	18 17	73 14	10	<0.1	3	50 6	<0.05 <0.05	<0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<25 <25	<50	<100 <100	<100	<50	<0.2	<0.5	<1 <1	<1 <1	Not Detected Not Detected
BH103 BH104	0.7-1.0 0-0.1	Silty clay Fill: silty clay	7	<0.4	13 20	17 24	14 71	<0.1 <0.1	8	6 68	<0.05 2.4	<0.05 0.3	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
BH104 BH104 - [LAB_DUP]	0.2-0.3 0.2-0.3	Fill: silty clay	<4 <4	<0.4	10 9	2	15 11	<0.1	2 2	2	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH104	1.7-2.0	Silty clay	5	<0.4	11	15	16	<0.1	2	6	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH105 BH105	0-0.2	Fill: silty clay Silty clay	9	<0.4	21 16	16	29 11	<0.1	3	10	2.6 <0.05	0.3 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH105 BH106	0.7-0.95 0.1-0.3	Silty clay Fill: silty clay	<4 6	<0.4	12 16	12 20	12 20	<0.1 <0.1	6	8 15	<0.05 4.3	<0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 180	<50 180	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA Not Detected
BH106	0.4-0.6	Fill: silty clay	<4	<0.4	16	12	9	<0.1	3	7	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH106 BH107	1.3-1.5 0-0.2	Silty clay Fill: silty clay	<4 5	<0.4	7 15	10	5 16	<0.1	2	6	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
BH107 BH107	0.5-0.7 1.5-1.7	Silty clay Silty clay	5 <4	<0.4	11 5	13	13	<0.1 <0.1	1 2	6	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
BH108	0-0.2	Fill: silty clay	9	0.5	25	8	42	0.2	3	20	<0.05	<0.05	<0.1	<0.1	<0.1	0.8	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH108 - [LAB_DUP] BH108	0-0.2 0.5-0.7	Fill: silty clay Silty clay	9	0.5 <0.4	25 12	10	10	<0.1 <0.1	2	22 6	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.7 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1	NA NA
BH108 BH109	0.8-1.0 0-0.15	Silty clay Fill: silty clay	<4 5	<0.4	12 14	10 21	11 59	<0.1 <0.1	2 11	6 76	<0.05 1.3	<0.05 0.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
BH109	0.5-0.8	Fill: silty clay	4	<0.4	14	12	12	<0.1	2	6	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH109 BH110	1.3-1.5 0-0.1	Silty clay Fill: silty clay	<4 <4	<0.4 0.6	10	11	74	<0.1 <0.1	7	7 56	<0.05 3	<0.05 0.3	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 150	<50 150	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA Not Detected
BH110 BH110	0.5-0.8 1.3-1.5	Fill: silty clay Silty clay	4 <4	<0.4	17 8	11	13 5	<0.1 <0.1	3	10 4	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
BH111	0-0.1	Fill: silty clay	5	0.6	18	28	50	<0.1	12	70	1.4	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	140	140	<0.2	<0.5	<1	<1	Not Detected
BH111 - [LAB_DUP] BH111	0-0.1	Fill: silty clay Fill: silty clay	5	<0.4	19 16	10	54 12	<0.1	13 3	79 10	1.7 <0.05	0.2 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	130 <100	130 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA NA
BH111 BH112	0.5-0.7 0-0.1	Silty clay Fill: silty clay	4 5	<0.4	14 20	14 15	11 45	<0.1 <0.1	6	11 36	<0.05 1.8	<0.05 0.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 120	<50 120	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA Not Detected
BH112	0.4-0.7	Fill: silty clay	6	<0.4	18	11	11	<0.1	3	9	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH112 BH113	1.2-1.5 0-0.2	Silty clay Fill: silty clay	5 4	<0.4 0.4	11 45	15 25	16 150	<0.1 <0.1	7	8 37	<0.05 5.7	<0.05 0.68	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA Not Detected
BH113 BH113	0.5-0.7 1.5-1.7	Silty clay Silty clay	<4 7	<0.4	15 20	13 21	11 16	<0.1 <0.1	3	9	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
BH114	0-0.1	Fill: silty clay	<4	1	16	46	77	<0.1	16	89	26	2.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	150	220	370	<0.2	<0.5	<1	<1	Not Detected
BH114 - [LAB_DUP] BH114	0-0.1 0.3-0.5	Fill: silty clay Fill: silty clay	<4 6	<0.4	18 17	35 15	86 13	<0.1 <0.1	16 4	86 14	16 <0.05	1.7 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	150 <100	220 <100	370 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA Not Detected
BH114 BH115	1.8-2.0 0.08-0.2	Silty clay Fill: gravelly sand	7	<0.4	17 17	16 55	15 2	<0.1	100	8 40	<0.05 <0.05	<0.05 <0.05	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
BH115	0.3-0.5	Fill: clayey sand	<4 <4	<0.4	8	6	14	<0.1	6	20	<0.05	<0.05	<0.1	<0.1 NA	<0.1 NA	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH115 BH116	0.8-1.0 0.06-0.2	Silty clay Fill: gravelly sand	<4	<0.4 <0.4	13 32	16 79	2	<0.1 <0.1	130	11 50	<0.05 0.2	<0.05 <0.05	NA <0.1	<0.1	<0.1	NA <0.1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 140	<50 140	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA Not Detected
BH116 BH116	0.2-0.5 0.7-1.0	Fill: clayey sand Silty clay	<4 6	<0.4	10 16	10	11 11	<0.1 <0.1	16 3	21 10	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
BH117	0.06-0.2	Fill: gravelly sand	<4 <4	<0.4	16	64	2 17	<0.1	120 7	42 25	<0.05	<0.05 0.06	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<25	<50	<100 <100	120 <100	120	<0.2	<0.5	<1	<1	Not Detected
BH117 BH117	0.4-0.7 1.3-1.5	Fill: clayey sand Silty clay	6	<0.4	13	17	12	<0.1	2	9	0.06 <0.05	<0.05	<0.1 NA	NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100	<100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
BH118 BH118 - [LAB_DUP]	0.06-0.2	Fill: gravelly sand Fill: gravelly sand	<4 <4	<0.4	16 13	67 66	3	<0.1 <0.1	100 92	43 40	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH118 BH118	0.2-0.4 0.7-1.0	Fill: clayey sand Silty clay	<4 5	<0.4 <0.4	7 15	10 19	16 9	<0.1 <0.1	3 5	17 17	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
BH119	0.07-0.2	Fill: gravelly sand	<4	<0.4	24	68	3	<0.1	120	55	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH119 BH119	0.2-0.5 0.7-1.0	Fill: clayey sand Silty clay	<4 7	<0.4	11	18 30	14	<0.1	7	30 28	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH120 BH120	0.1-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	<4 <4	<0.4 <0.4	6 11	87 14	2 11	<0.1 <0.1	24 3	29 12	6.1 <0.05	0.65 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	150 <100	410 <100	560 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH120	0.7-1.0	Silty clay	6	<0.4	16	13	13	<0.1	4	13	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH121 BH121 - [LAB_DUP]	0-0.2 0-0.2	Fill: silty clayey sand Fill: silty clayey sand	8 5	<0.4	20	29 25	35 38	<0.1	13 12	91 50	6.2	0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	120 130	120 130	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH121 BH121	0.4-0.5 0.7-0.95	Silty clay Silty clay	6	<0.4	16 15	16 16	12 15	<0.1 <0.1	5	19 21	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH122	0.01-0.16	Fill: gravelly sand	<4	<0.4	10	70	4	<0.1	76	41	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
BH122 BH122	0.2-0.35 0.7-1.0	Fill: gravelly sand Silty clay	<4 6	<0.4 <0.4	14	9 15	14 12	<0.1 <0.1	9	29 13	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected NA
BH123 BH123	0.08-0.2 0.2-0.5	Fill: gravelly sand Fill: clayey sand	<4 <4	<0.4 <0.4	16 7	74 5	2 13	<0.1 <0.1	100 5	42 18	<0.05 0.4	<0.05 0.06	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	130 <100	130 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected Not Detected
BH123	0.7-1.0	Silty clay	6	<0.4	15	25	16	<0.1	3	17	<0.05	<0.05	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
BH124 BH124	0.05-0.15 0.2-0.5	Fill: gravelly sand Fill: clayey sand	<4 <4	<0.4 <0.4	13 9	8	6 18	<0.1 <0.1	79 5	34 24	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	140 <100	140 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH124 - [LAB_DUP] BH124	0.2-0.5 0.6-1.0	Fill: clayey sand Silty clay	<4 7	<0.4 <0.4	9	6 21	13 19	<0.1 <0.1	7	18 18	<0.05 <0.05	<0.05 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
BH125	0.12-0.3	Fill: gravelly sand	<4	<0.4	8	110	4	<0.1	14	32	0.3	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	220	940	1160	<0.2	<0.5	<1	<1	Not Detected
BH125 BH125	0.3-0.5 0.7-1.0	Fill: clayey sand Silty clay	<4 6	<0.4 <0.4	12 16	10 14	13 10	<0.1 <0.1	15 4	21 12	0.54 <0.05	0.06 <0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	Not Detected NA
BH126 BH126	0-0.2 0.4-0.5	Fill: silty sand Fill: silty clay	4 <4	<0.4 <0.4	13 15	10 12	23 10	<0.1 <0.1	6	18 11	1.6 <0.05	0.2 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected Not Detected
BH126 SDUP107	0.7-0.95	Silty clay Duplicate BH108 0-0.2	<4	<0.4	13	14	9	<0.1	4 2	12	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	<25	<50 <50	<100 <100	<100 <100	<50	<0.2 <0.2	<0.5 <0.5	<1	<1	NA NA
SDUP108	-	Duplicate BH107 0-0.2	8	0.5	15 23	9	15 39	<0.1	4	24	<0.05	<0.05	NA	NA	NA	NA	NA	<25 <25	<50	<100	<100	<50 <50	<0.2	<0.5	<1	<1	NA
SDUP109 SDUP109 - [LAB_DUP]	-	Duplicate BH126 0-0.2 Lab Dup	5 7	<0.4 <0.4	16 18	12 9	22	<0.1 <0.1	5	17 16	1.1 0.76	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
SDUP110 SDUP111		Duplicate BH102 0-0.2 Duplicate BH116 0.06-	4 <4	<0.4	16 20	28 76	50	<0.1	24 120	49 45	0.2	0.2 <0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<25 <25	<50 <50	<100 <100	<100 140	<50 140	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	NA NA
SDUP112	-	Duplicate BH103 0.05-	<4	<0.4	14	88	2	<0.1	130	48	<0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	100	100	<0.2	<0.5	<1	<1	NA
SDUP101 SDUP101 - [LAB_DUP]	-	Duplicate BH104 1.7- Lab Dup	<4 5	<0.4 <0.4	11 12	13 12	11 14	<0.1 <0.1	2	12 8	<0.05 NA	<0.05 NA	NA NA	NA NA	NA NA	NA NA	NA NA	<25 NA	<50 NA	<100 NA	<100 NA	<50 NA	<0.2 NA	<0.5 NA	<1 NA	<1 NA	NA NA
SDUP103 SDUP103 - [LAB_DUP]	-	Duplicate BH110 0-0.1	<4 NA	0.6 NA	12	16 NA	71 NA	<0.1 NA	8 NA	59 NA	3.6 NA	0.38 NA	<0.1 NA	<0.1	<0.1 <0.1	<0.1	<0.1 NA	<25 NA	<50 NA	<100 NA	<100 NA	<50 NA	<0.2 NA	<0.5 NA	<1 NA	<1 NA	NA NA
SDUP104	-	Duplicate BH112 0-0.1	6	0.6	NA 20	22	57	<0.1	8	49	2.2	0.21	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
SDUP105 SDUP106	-	Duplicate BH111 0-0.1 Duplicate BH113 0-0.2	6 5	0.8	23 16	33 23	56 49	<0.1 <0.1	15 8	80 40	1.6 4.4	0.19 0.43	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<25 <25	<50 <50	<100 <100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA NA
Total Number of Commis	ne .		99	00			99		00	99	98		69	70	70	70	69	98	98		98	98	98	98	98	98	47
Total Number of Sample Maximum Value			99	99	99 45	99 110	150	99 0.2	99 140	99	98 26	98 2.4	<pql< td=""><td>70 <pql< td=""><td>70 <pql< td=""><td>0.8</td><td><pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 220</td><td>940</td><td>1160</td><td>98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	70 <pql< td=""><td>70 <pql< td=""><td>0.8</td><td><pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 220</td><td>940</td><td>1160</td><td>98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	70 <pql< td=""><td>0.8</td><td><pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 220</td><td>940</td><td>1160</td><td>98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	0.8	<pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 220</td><td>940</td><td>1160</td><td>98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	98 <pql< td=""><td><pql< td=""><td>98 220</td><td>940</td><td>1160</td><td>98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>98 220</td><td>940</td><td>1160</td><td>98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	98 220	940	1160	98 <pql< td=""><td>98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<></td></pql<>	98 <pql< td=""><td><pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td>98 <pql< td=""><td>47 Not Detected</td></pql<></td></pql<>	98 <pql< td=""><td>47 Not Detected</td></pql<>	47 Not Detected
Concentration above the C	T1			VALUE																							

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2 Concentration above PQL

VALUE VALUE Bold

TABLE S8 SOIL LABORATORY TCLP RESULTS All data in mg/L unless stated otherwise

			Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	B(a)P
PQL - Envirolab Service	S		0.05	0.01	0.01	0.03	0.0005	0.02	0.001
TCLP1 - General Solid V	Vaste		5	1	5	5	0.2	2	0.04
TCLP2 - Restricted Solid	l Waste		20	4	20	20	0.8	8	0.16
TCLP3 - Hazardous Was	ste		>20	>4	>20	>20	>0.8	>8	>0.16
Sample Reference	Sample Depth	Sample Description							
BH101	0-0.1	Fill: silty clay	NA	NA	NA	0.05	NA	NA	NA
BH103	0.05-0.15	Fill: gravelly sand	NA	NA	NA	NA	NA	0.09	NA
BH113	0-0.2	Fill: silty clay	NA	NA	NA	<0.03	NA	NA	NA
BH114	0-0.1	Fill: silty clay	NA	NA	NA	NA	NA	NA	<0.0001
BH115	0.08-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.29	NA
BH115 - [LAB_DUP]	0.08-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.1	NA
BH116	0.06-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.43	NA
BH117	0.06-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.2	NA
BH118	0.06-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.07	NA
BH119	0.07-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.53	NA
BH122	0.01-0.16	Fill: gravelly sand	NA	NA	NA	NA	NA	0.05	NA
BH123	0.08-0.2	Fill: gravelly sand	NA	NA	NA	NA	NA	0.08	NA
BH124	0.05-0.15	Fill: gravelly sand	NA	NA	NA	NA	NA	0.06	NA
BH124 - [LAB_DUP]	0.05-0.15	Fill: gravelly sand	NA	NA	NA	NA	NA	0.06	NA
						·		·	
Total Number of sam	ples		0	0	0	2	0	11	1
Maximum Value			NA	NA	NA	0.05	NA	0.53	<pql< td=""></pql<>

General Solid Waste Restricted Solid Waste Hazardous Waste Concentration above PQL VALUE
VALUE
Bold

TABLE OS1 PQL Envirolab SYD PQL Envirolab VIC <100 <100 <0.2 <0.5 <0.1 <0.1 <0.1 <0.1 <0.2 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 NA NC NA nc NA nc NA nc NA nc <0.4 10 15 <0.1 2 7 9 28.5 0.125 2.5 13.5 laboratory duplicate <0.4 0.5 0.35 Intra laboratory duplicate RPD %
 <0.1</th>
 <th
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401</th <0.4 13 10 <0.4 16 12 nc 14.5 11 BH126 <25 <50 <100 <100 <0.2 <0.5 <1 <25 <50 <100 <100 <0.2 <0.5 <1 nc <0.1 <0.1 nc Intra laboratory duplicate <50 <100 <100 <0.2 <0.5 <1 <50 <100 110 <0.2 <0.5 <1 nc nc 80 nc nc nc nc nc 75% nc nc nc
 c0.1
 <0.1</td>
 <td <0.1 <0.1 nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc nc SDUP110 MEAN RPD % <25 <50 120 240 <0.2 <0.5 <1 </p>
<25 <50 120 240 <0.2 <0.5 <1 </p>
nc nc 120 240 nc nc nc <0.2 <0.05 <0.1 <0.2 <0.05 <0.1 nc nc nc nc nc <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 nc nc nc nc nc <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 nc nc nc <4 <0.4 <4 <0.4 nc nc nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc 0.2 <0.1 0.2 <0.1 0.2 nc <0.1 <0.1 nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc <0.1 <0.1 nc nc <0.1 <0.1 nc nc <0.1 <0.1 nc 0.06-0.2 SDUP111 <0.1 <0.1 <0.1 duplicate Intra laboratory duplicate | COL1 | <0.2 <0.05 <0.1 <0.1 Inter laboratory duplicate MEAN <25 <50 180 130 <0.2 <0.5 <1 <25 <50 <100 <100 <0.2 <0.5 <1 nc nc nc 115 90 nc nc nc</p>
 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.5</td>
 <0.5</td>
 <0.3</td>
 <0.2</td>
 <0.6</td>
 <0.3</td>
 <0.2</td>
 <0.1</td>

 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.1</td>
 <0.6</td>
 <0.6</td>
 <0.2</td>
 <0.3</td>
 <0.7</td>
 <0.38</td>
 <0.3</td>
 <0.1</td>

 nc
 nc
 nc
 nc
 <0.1</td>
 nc
 <0.55</td>
 <0.55</td>
 <0.25</td>
 <0.25</td>
 <0.65</td>
 <0.65</td>
 <0.43</td>
 <0.25</td>
 <0.65</td>
 <0.44</td>
 <0.25</td>
 <0.65</td>
 <0.44</td>
 <0.25</td>
 <0.65</td>
 <0.44</td>
 <0.25</td>
 <0.65</td>
 <0.24</td>
 <0.65</td>
 <0.45</td>
 <0.65</td>
 <0.44</td>
 <0.25</td>
 <0.65</td>
 <0.24</td>
 <0.65</td>
 <0.24</td>
 <0.65</td>
 <0.65</td>
 <0.24</td>
 <0.65</td>
 <0.25</td>
 <0.65</td>
 <0.25</td>
 <0.65</td>
 <0.24</td>
 <0.75</td>
 <0.75</td>
 <0.05</td>
 <0.05</td>
 <0.05</td>
 <0.05</td>
 <0.05</td>
 <0 | CO1 | 0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | <0,1 | < <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 nc nc nc nc <0.1 <0.1 nc <0.1 <0.1 nc laboratory duplicate RPD %
 c1
 <0.1</td>
 < 5 0.4 6 0.6 5.5 0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0-0.1 <0.1 <0.1 nc SDUP104 duplicate 150 <0.1 7 49 <0.1 8 99.5 nc 7.5 Inter laboratory duplicate
 <0.1</td>
 <td SDUP106 0.5 16 23 0.45 30.5 24 MEAN 12% 12% 100% 50% <25 <50 <100 <100 <0.2 <0.5 <1 <2 <1 <0.1</p>
<0. NA <4 <0.4 3 <1 3 <0.1 <1 15-17/11/2023 TS-S101 15-17/11/2023 FR-101-SPT µg/L 16/11/23 Result outside of QA/QC acceptance criteria Rinsate metals results in mg/L

Preliminary Site Investigation Bankstown Airport, Bankstown, NSW E35614P2

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

CT: Contaminant Threshold Fluorotelomer sulfonic acid

NA: Not Analysed NC: Not Calculated

NEMP National Environmental Management Plan

NSL: No Set Limit

PFAS Per- and polyfluoroalkyl substances
PFHxS Perfluorohexanesulfonic acid
PFOA Perfluorooctanoic acid
PFOS Perfluorooctanesulfonic acid
PQL: Practical Quantitation Limit

RS: Rinsate Sample

SAC: Site Assessment Criteria

SCC: Specific Contaminant Concentration

TB: Trip Blank

TCLP: Toxicity Characteristics Leaching Procedure

TS: Trip Spike

UCL: Upper Level Confidence Limit on Mean Value

Table Specific Explanations:

Groundwater Ecology Tables:

- 95% refers to a concentration that has been derived to protect 95% of aquatic species
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

Waste Classification and TCLP Table:

- Data assessed using the Addendum to the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014) -October 2016

Preliminary Site Investigation Bankstown Airport, Bankstown, NSW

TABLE SP1.1
SUMMARY OF PFAS CONCENTRATIONS IN SOIL - HUMAN HEALTH

Units are μg/Kg unless stated other	wise.																																																					
	PQL	SAC - NEMP 2020	BH101	8H101 8H	101 BH10	BH102	BH102	BH103	BH103	BH103	BH104	BH104	BH104	BH105	BH105	BH105 - [LAB_DUP]	BH105	BH106	BH106	BH106	8H107	BH107	8 8H107 [U	H107 - IB_DUP] BH:	08 BH108	BH108	BH109	BH109 B	BH109 BH	H110 BH1	10 BH11	10 BH1	8H111 -	P] BH111	BH111	BH112 B	8H112 BH	112 BH11	3 BH113	BH113	BH114	BH114	BH114 - [LAB_DUP]	BH114	SDUP105	SDU	P106	SDUP107	SDUP107 - [LAB_DU	SDUP112	SDUP101 (PFA	S) SDUP102 (PF	S) SDUP103 (I	PFAS) SDUP1
	Envirolab	Industrial/	0-0.1	0.7-1 1.3	-1.5 0-0.	0.9-1	1.7-1.95	0.05-0.15	0.2-0.4	0.7-1	0.0.1	0.2-0.3	1.7-2	0-0.2	0.4-0.5	0.4-0.5	0.7-0.95	0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	15-0.7	15-17	15-1.7 0-0	2 0.8-0.9	1.9-2	0-0.15	0.2-0.5 1	.3-1.5 0	0.5	1.8 1.3-1	1.5 0-0	1 0-0.1	0.2-0.5	13-1.5	0-0.1 0	14-0.7 1.2	1.5 0-0.2	0.5-0.3	7 1.9-2	0-0.1	0.8-0.95	0.8-0.95	1.8-2	-				-			-		
	Services	Commercial	Filt: silty clay	it: sityclay Sit	clay Filt sity	ay Silty clay	Sity day	Fill: gravelly sand	Filt: clayey sand	Siby clay	FII: silty day	Filt: silty day	y Sityclay	Filt: silby clayey sa	nd Filt: silty clay	Filt: silty clay	Sity day	Filt: siby clay	Filt: siby clay	Siby day 5	it sityday 1	ilty day	Sityclay 1	Stycky Fit sit	clay Sity day	Sity day	Fit: sity day	Filt sitry clay S	ityday Fits	sityday Fit sit	day Sity d	by Filt-site	day Filt sitty da	y Filt sity day	Sityclay E	Filt sitty day Filt	sityclay Sity	day Filt sitty o	day Silty day	y Silty day	Filt: silty day	Filt: silty clay	Filt: silby clay	Silty clay	Duplicate BH111 0-0	01 Duplicate 8	12130-0.02	Duplicate BH108 0-0.2	Duplicate 9H109 0-0.2	Duplicate BH103 0.05	3.15 Duplicate BH104.1.7	2.0 Duplicate BH109 0	15 Duplicate BH11	0 0-0.1 Duplicate
FAS Compound																																																						
rfluorohexanesulfonic acid - PFHxS	0.1	NSL	29	0.9 <	0.1 0.2	0.2	< 0.1	0.1	0.2	0.9	0.7	0.9	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.4	<0.1	<0.1	0.5	<0.1	<0.1	<0.1 0.	4 <0.1	<0.1	0.5	3.1	<0.1	0.5 0.	40.1	1 2	3 2.9	49	0.4	1.8	0.5 <	1.1	0.1	0.2	0.5	1.2	1.2	2.1	2.7	2	2	0.3	0.3	< 0.1	<0.1	0.7	0.5	
fluorooctanesulfonic acid PFOS	0.1	NSL	82	0.5 <	0.1 5.4	0.1	< 0.1	< 0.1	0.2	0.3	7.1	0.3	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	0.4	<0.1	0.9	0.2	<0.1	<0.1 0.	3 <0.1	<0.1	5.5	0.4	<0.1	5.5 <0	1 <0.1	1 2	23	44	<0.1	2.9	0.2 <	1.1 7.1	<0.1	0.2	8.5	<0.1	< 0.1	0.6	20		.7	0.3	0.3	< 0.1	<0.1	4.2	4.3	
fluorooctanoic acid PFOA	0.1	50,000	2	<0.1 <	0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	0.4	<0.1	<0.1 (0.1 <0	1 <0.1	1 0.	0.1	1	<0.1	0.3	<0.1 <	.1 0.3	<0.1	<0.1	0.1	<0.1	< 0.1	<0.1	0.1	4	1.1	0.1	< 0.1	< 0.1	<0.1	0.4	0.2	
P FTS	0.1	NSL	< 0.1	< 0.1 <	0.1 <0.3	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1 <0	1 <0.1	1 <0	1 0.2	< 0.1	< 0.1	<0.1	<0.1 <	.1 <0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	4	.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	
r FTS	0.2	NSL	< 0.2	< 0.2 <	0.2 <0.3	< 0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2 <0	2 <0.2	<0.2	<0.2	<0.2	<0.2 <	<0.2 <0	2 <0.2	2 <0	2 <0.2	< 0.2	<0.2	<0.2	<0.2 <	1.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	4	1.2	<0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	
tal Positive PFHxS & PFOS	0.1	20,000	110	1 <	0.1 6	0.3	< 0.1	0.1	0.4	1	8	1	< 0.1	0.4	< 0.1	< 0.1	< 0.1	0.4	0.4	< 0.1	1	0.2	<0.1	<0.1 1	<0.1	<0.1	6	4	<0.1	6 0.	<0.1	1 2	26	93	0.4	5	1 <	.1 8	0.1	0.4	9	1.2	1.2	2.8	23	2	.9	0.6	0.6	< 0.1	<0.1	4.9	4.8	
tal Positive PFOS & PFOA	0.1	NSL	83	0.5 <	0.1 5.5	0.1	< 0.1	< 0.1	0.2	0.3	7.2	0.3	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	0.4	< 0.1	0.9	0.2	<0.1	<0.1 0.	3 <0.1	<0.1	6	0.4	<0.1	5.6 <0	1 <0.1	1 2	23	45	<0.1	3.1	0.2 <	1.1 7.4	<0.1	0.2	8.6	<0.1	< 0.1	0.6	20	0	7	0.4	0.3	< 0.1	<0.1	4.6	4.5	
al Positive PFAS	0.1	NSL	110	1.4 <	1 5.8	0.3	<0.1	0.1	0.4	1.1	7.9	1.2	<0.1	0.4	<0.1	<0.1	<0.1	0.4	0.4	<0.1	1.4	0.2	<0.1	<0.1 0.	s <0.1	<0.1	6.4	3.5	<0.1 €	6.1 0.	<0.1	1 2	26	94	0.4	5	0.7 <	1 86	0.1	0.4	9.1	1.2	1.2	2.8	23	2	9	0.7	0.6	<0.1	<0.1	5.3	5.0	

Positive PFAS result Bold
PFAS result above the SAC Bold

TABLE SP1.2
SUMMARY OF PFAS CONCENTRATIONS IN SOIL - HUMAN HEALTH
Units are µg/Kg unless stated otherwise.

	PQL	SAC - NEMP 2020	BH115	8H115	BH115	BH116	BH116	BH116	BH117	8H117	BH117	BH117 - [LAB_DUP]	8H118	8H118	BH118	BH119	BH119	BH119	8H120	BH120	BH120	8H121	BH121 - [LAB_DUP]	BH121	BH121	BH122	BH122	BH122	BH123	BH123	BH123	BH124	BH124	BH124 - [LAB_DUP]	BH124	BH125	BH125	BH125	BH126	BH126	BH126
	Envirolab	Industrial/	0.08-0.2	0.3-0.5	1.9-2	0.06-0.2	0.2-0.5	0.7-1	0.06-0.2	0.4-0.7	1.3-1.5	1.3-1.5	0.06-0.2	0.2-0.4	0.7-0.1	0.07-0.2	0.2-0.5	1.9-2	0.1-0.2	0.2-0.5	0.7-1	0-0.2	0-0.2	0.4-0.5	1.7-1.95	0.01-0.16	0.2-0.35	0.7-1	0.08-0.2	0.2-0.5	0.7-1	0.05-0.15	0.2-0.5	0.2-0.5	1.9-2	0.12-0.3	0.35	0.7-1	0-0.2	0.4-0.5	0.7-0.95
	Services	Commercial	Filt: graveBy sand	Filt: clayey sand	Sibyclay	Filt: gravely san	d Filt: dayey sand	Sity day	Filt: gravely sand	Filt: clayey sand	Siby clay	Siby day	Filt: gravely sand	Filt clayey sand	Sityclay	Filt: gravely cano	Fill: dayey sand	Siby day	Fill: gravelly sand	Filt dayey sand	Siby day	Filt: silby day	Filt: siby clay	Filt clayey sand	Siby clay	Fit: gravely rand	It gravely sand	Sity day	iit gravely cand	Filt clayey sand	Siby day	Filt gravely sand it	Rt. dayey sand	Filt: dayey sand	Sibyclay	Fit: gravely sand	Rit: clayey sand	Siby clay	Filt silty sand	Filt siby clay	Silty day
PFAS Compound																																									
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.9	<0.1	0.2	1.9	1.9	<0.1	0.1	1.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	1.9	1.7	33	0.2	0.9	1.1	3.8	<0.1	1.2	5.8	0.2	0.3	0.3	<0.1	0.1	1.0	7.1	7.1	32	11
Perfluorooctanesulfonic acid PFOS	0.1	NSL	< 0.1	0.1	< 0.1	< 0.1	0.1	0.3	< 0.1	<0.1	0.3	0.2	<0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.2	2.2	< 0.1	44	49	1.9	<0.1	<0.1	0.2	1.1	<0.1	2.0	1.0	<0.1	0.5	0.5	< 0.1	< 0.1	0.6	0.1	190	14	2.3
Perfluorooctanoic acid PFOA	0.1	50,000	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.7	0.5	0.1
6:2 FTS	0.1	NSL	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
8:2 FTS	0.2	NSL	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2
Total Positive PFHxS & PFOS	0.1	20,000	< 0.1	0.1	< 0.1	< 0.1	0.4	1	< 0.1	0.2	2	2	<0.1	0.1	1	< 0.1	< 0.1	< 0.1	0.2	2	< 0.1	46	51	35	0.2	1	1	5	<0.1	3.1	6.8	0.2	0.8	0.9	< 0.1	0.1	1.6	7.2	200	46	13
Total Positive PFOS & PFOA	0.1	NSL	< 0.1	0.1	< 0.1	< 0.1	0.1	0.3	< 0.1	<0.1	0.3	0.2	<0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.2	2.2	< 0.1	44	50	2	<0.1	<0.1	0.2	1.1	<0.1	2.0	1.1	<0.1	0.5	0.5	< 0.1	< 0.1	0.6	0.1	190	14	2.4
Total Positive PFAS	0.1	NSL	< 0.1	0.1	< 0.1	< 0.1	0.4	1.1	<0.1	0.2	2.1	2.1	<0.1	0.1	1.3	<0.1	<0.1	< 0.1	0.2	2.4	< 0.1	46	51	35	0.2	0.9	1.4	4.9	<0.1	3.1	7.0	0.2	0.8	0.9	<0.1	0.1	1.6	7.2	200	46	13

Positive PFAS result Bold
PFAS result above the SAC Bold

Preliminary Site Investigation Bankstown Airpart, Bankstown, NSW

																																																		JKET	ironments
TABLE SP2.1 SUMMARY OF PEAS CONCENTRATION Units are µg/Kg unless stated otherwi		COLOGY																																																	
	PQL	SAC - NEMP 2020	89001	BHSES	B1601 B	H302 BH	H302 BH	4302 BHG03	1 814308	894308	894306	B1006 B	1904 BHG0	25 E+305	EH305	EH925	BH306	BH206	BH306 BH	or swar	BHSST	(LAB_DUP)	814208	Brook I	HGS BH	209 E4309	B-1329	BHGGO	B4133	BH110 BH110	n (UNILDU	UP) BH111	84111	B4112 B	BHI12 BH	112 894113	89433	B4533	BHGG4 BHGS	BHISE- M JANUDU	P(136	SOUPSOS	10 UP 205	10UP107	100F107 - Jul	M(DUP) S	10UP112	SOUPLES (PRES)	SDUP300 (PFAN)	SOUP201 (PRAS)	30UP301 (PFA3)
	Enwirelab	Direct exposure	0-0.3	0.7-1	18-18	10.2	19-1 1.7	183 029-0.1	15 02-04	0.7-1	90.1	62-63 1	.70 002	2 04-03	04-03	0.7-099	01-03	0.008	1915 00	13 05-07	13-17	1547	0.03	0.803	19-2 0-0	135 02-03	19-15	001	03-08	13-15 0-01	00.1	02-01	13-13	0-0.1 0	0.047 1.2	1.5 00.2	69-07	1.9-2	001 080	95 08-035	1.8-2										
	Services	All land use	All sittings	Elitablysiss	Sityolog 500	digular Sile	hydry Gh	yday (Digwally	yang tili dayaya	and Sitypley	Employees E	Fill sillyring 51	tyring sittyring	grand Fill allegates	ry – Siin siliyole	y Silvyday	Employee	Elita Dyrky	Display (Shall	holey Silveley	Sityviey	Silvoley	Elitablyshy	Sityries 5	hydey 50 s	Byriey (100 silly)	day Situatey	All situates	Situation of	Daving Ellinster	ries Divided	day Silvings	ley Silveries d	STATISTICS STR.	hallysley Sile	otey (60 sitys)	lay Silvyday	Sityoley Ex	situate filling	ring Silvatigal	lay Sityviay	Organizate Security 2010	Deplicate B4113 8-61	Ouglines \$1005.0	2 Deployer Str.	06003 Syrinte	# 84303335435 Q	Duglisete BRIDE L 7-38	Suplicate 8430494-15	Deplicate \$15309.65	Deglisse BHIG 661
PFAS Compound Perfluorohexanesulfonic acid - PFINS																																																			
Perfluorohexanesulfonic acid - PFHxS	0.1	NS.	29	0.9	<0.1	0.2 0	0.2 <	01 01	0.2	0.9	0.7	0.9	0.1 0.2	1 40.1	<0.1	<0.1	0.4	<0.1	<0.1 0.	5 <0.1	<0.1	<0.1	0.4	<0.1	0.1 0	5 2.1	<0.1	0.5	0.4	<0.1 2.8	2.9	49	0.4	1.8	0.5 <0	11 12	0.1	0.2	05 13	1.2	2.1	2.7	2.2	0.3	0.3		<0.1	<0.1	0.7	0.5	1.6
Perfluorooctanesulfonic acid PFOS	0.1	1000	92	0.5	<0.1	5.4 0	0.1 <	01 <0.1	0.2	0.3	7.1	0.3	0.1 0.2	1 40.1	<0.1	<0.1	<0.1	0.4	<0.1 0.	9 0.2	<0.1	<0.1	0.3	<0.1	0.1 5	S 0.4	<0.1	2.2	<0.1	<0.1 21	23	- 64	<0.1	2.9	0.2 <0	1.1 7.1	<0.1	0.2	8.5 <0.	40.1	0.6	20.0	0.7	0.3	0.3		<0.1	<0.1	4.2	4.3	2.7
Perfluoroectanoic acid PFOA	0.1	10,000	2	<0.1	<0.1	0.1 <	01 4	0.1	<0.1	<0.1	0.1	<0.1	0.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 0	4 401	<0.1	0.1	<0.1	<0.1 0.2	0.1	1.2	<0.1	0.3	<0.1 <0	11 03	<0.1	<0.1	0.1 <0.	40.1	<0.1	0.1	<0.1	0.1	<0.1		<0.1	40.1	0.4	0.2	0.2
6:2 FTS	0.1	NS.	<0.1	<0.1	-0.1	0.1 4	01 4	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 4	0.1 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 0	11 401	<0.1	<0.1	<0.1	<0.1 <0.1	0.2	<0.1	<0.1	<0.1	<0.1 <0	1.1 <0.1	<0.1	<0.1	40.1 40.	40.1	<0.1	<0.1	40.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	40.1
8:2 FTS	0.2	NS.	<0.2	<0.2	<0.2	02 4	0.2 <	02 <0.2	1 40.2	<0.2	<0.2	<0.2 4	0.2 <0.2	2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0	2 <0.2	<0.2	<0.2	<0.2	<0.2	d0.2 d0	12 <0.2	<0.2	<0.2	<0.2	<0.2 <0.2	1 40.2	40.2	<0.2	<0.2	<0.2 <0	12 <0.2	<0.2	<0.2	<0.2 <0.	0.2	<0.2	<0.2	<0.2	40.2	<0.2		<0.2	40.2	<0.2	40.2	<0.2
Total Positive PFHxS & PFOS	0.1	NS.	110	1.6	<0.1	5.6 0	0.3	01 01	0.4	1.1	7.8	1.2	0.1 0.4	1 40.1	<0.1	<0.1	0.4	0.4	<0.1 1	4 0.2	<0.1	<0.1	0.6	<0.1	0.1	2.5	<0.1	6	0.4	<0.1 24	26	93	0.4	4.7	0.7 <0	11 83	0.1	0.4	9 13	1.2	2.8	22.0	2.9	0.6	0.6		40.1	49.1	49	4.8	4.3
Total Positive PFOS & PFOA	0.1	NS.	83	0.5	<0.1	5.5 0	0.1 <	0.1 <0.1	0.2	0.3	7.2	0.3	0.1 0.2	1.05	<0.1	<0.1	<0.1	0.4	<0.1 0.	9 0.2	<0.1	<0.1	0.3	<0.1	0.1	0.4	<0.1	3.2	<0.1	<0.1 21	23	45	<0.1	2.1	0.2 <0	1.1 7.4	<0.1	0.2	8.6 40.	40.1	0.6	20.0	0.7	0.4	0.3		<0.1	<0.1	4.6	4.5	2.9
Total Positive PFAS	0.1	NS.	110	1.6	<0.1	5.8 0	0.3 <	01 01	0.4	1.1	7.9	1.2	0.1 0.4	40.1	<0.1	<0.1	0.4	0.4	<0.1 1.	4 0.2	<0.1	<0.1	0.6	<0.1	0.1 6	4 2.5	<0.1	6.1	0.4	<0.1 24	26	94	0.4	S	0.7 <0	11 86	0.1	0.4	91 12	1.2	2.8	22.0	2.9	0.7	0.6		<0.1	49.1	5.3	5.0	4.5
Positive PFAS result PFAS result above the SAC																																																			

TABLE SP2.2 SUMMARY OF PFAS CONCENTRATION: Units are µg/Eg unless stated otherwise		coroeA																																							
	POL	1AC - NEMP 2023	Bessa	merra.	men	B4128	B4110	marria	BACCE	86777	BATTT	menty -	mere.	name.	Barrier .	84111	84778	marrie .	84777	894730	84777	merra.	BAGET -	merri .	merri .	BATTT.	89022	894322	894777	84121	84779	89524	84126	BHIDS - (LAS DUP)	84120	BHIZE	BH125	B×125	BH126	BHIDS	BHIDS
	Envirolde	Direct exposure	0.08-0.2	0.103	19-2	0.00-0.2	0.243	07-1	0.09-0.2	5507	1515	1515	20007	0.2-04	0.703	0070.2	0101	1.94	01-02	4161	651	0.02	002	04-03	1718	0.00-0.16	0100	434	50807	02-03	0.74	0.09-0.13	02-03	02:03	194	0.120.1	0.0-3	07-1	0.02	0.043	0.7030
	Senere		All exertisant			50 months and	50 demand	Shrier	fill wanth and	Oil degrand	Situates	Shole	Exertises	III ricercum	Silveter	I portions	50 demand	Silvotes	10 months and	10 degrand	Situates	Nil silvoles	50 silvoles	10 demant	Silvoley	Till angeligger	ill months an	Sholer	Water board	Ni degrado	Silverier 1	(Constituted		Ni derrant	Shrine	filt grantinger	Michemous.		Il albrand		
PFAS Compound																																									
Perfluorohexanesulfonic acid - PFHxS	0.1	NS.	<0.1	<0.1	<0.1	40.1	0.2	0.9	40.1	0.2	1.9	1.9	<0.1	0.1	1.1	40.1	40.1	<0.1	40.1	6.2	40.1	1.9	1.7	22	0.2	0.9	1.1	2.8	40.1	1.2	5.8	0.2	0.3	6.3	<0.1	0.1	1.0	7.1	7.1	22	11
Perfluorocctanesulfonic acid PFOS	0.1	1000	<0.1	0.1	<0.1	40.1	0.1	0.3	<0.1	<0.1	0.3	0.2	<0.1	<0.1	0.2	40.1	40.1	<0.1	0.2	2.2	<0.1	44	49	1.9	<0.1	<0.1	0.2	1.1	<0.1	2.0	1.0	<0.1	0.5	0.5	<0.1	<0.1	0.6	0.1	190	24	2.3
Perfluoroctanoic acid PFOA	0.1	10,000	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.7	0.5	0.1
6:2 FTS	0.1	NS.	<0.1	<0.1	<0.1	40.1	49.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	0.2	NS.	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Positive PFHxS & PFOS	0.1	NS.	<0.1	0.1	<0.1	<0.1	0.4	1.1	<0.1	0.2	2.1	2.1	<0.1	0.1	1.3	<0.1	<0.1	<0.1	0.2	2.4	<0.1	46	51	25	0.2	0.9	1.4	4.9	<0.1	2.1	6.8	0.2	0.8	0.9	<0.1	0.1	1.6	7.2	200	46.0	13
Total Positive PFOS & PFOA	0.1	NS.	<0.1	0.1	<0.1	40.1	0.1	0.3	<0.1	<0.1	0.3	0.2	<0.1	<0.1	0.2	<0.1	40.1	<0.1	0.2	2.2	<0.1	44	SO	2	<0.1	<0.1	0.2	1.1	<0.1	2.0	1.1	<0.1	0.5	0.5	<0.1	<0.1	0.6	0.1	190	14.0	2.4
Total Positive PFAS	0.1	NS.	<0.1	0.1	<0.1	<0.1	0.4	1.1	<0.1	0.2	2.1	2.1	<0.1	0.1	1.3	<0.1	<0.1	<0.1	0.2	2.4	<0.1	46	51	25	0.2	0.9	1.4	4.9	<0.1	2.1	7.0	0.2	0.8	0.9	<0.1	0.1	1.6	7.2	200	46.0	13
Positive PFAS result PFAS result above the SAC																																									

	.		BH101	8H101	BH101 BH	102 BH103	BH102	BH103	BH103 B	H103 BH1	M 8H104	BH104	BH105	BH105	BH105 - [LAB_DUP]	8H105 BH10	BH106	BH306	8H207 BH	1107 BH10	9 [LAB_DU	⊅] 8H108	BH108	8H108	8H109 8H10	9 BH109	BH110	BH110	8H110 8H1	BH111 - 1 [LAB_DUP]	88111	8H111 B	112 8H112	8H112 BH	113 BH113	BH113	BH114 BH	8H114 - 114 [LAB_DUP]	BH114	SDUP105	SDUP106	SDUP107	SDUP107 - [LAB_DUP]	SDUP112	SDUP101 (PFAS)	SDUP102 (PFAS)	SDUP103 (PFAS)	SDUP104
Envirolab	ab SCC1	1 5002	0-0.1	0.7-1	13-15 0	0.2 0.9-1	1.7-1.95	0.05-0.15	0.2-0.4	3.7-1 0-0.	0.2-03	1.7-2	0-0.2	0.4-0.5	0.4-0.5	7-0.95 0.1-0	0.4-0.6	13-15	0-0.2 0.5	5-0.7 1.5-1	7 15-13	7 0-0.2	0.8-0.9	1.9-2	0-0.15 0.2-0	5 13-15	0-0.1	05-08	13-15 0-0	0-0.1	0.2-0.5	13-15 0	0.1 0.4-0.7	12-15 0	0.5-0.7	1.9-2		0.95 0.8-0.95	1.8-2									
Services	es		Fill: sitty clay	Fill: sitty clay	Sityclay Filt o	tyclay Sitycla	y Sity day	Filt gravely rand	Filt dayey cand Si	ity clay Fill: sity	clay Filt sity day	y Sityday	It sity dayey our	Filt sity day	RE sity day	ityday filt sityd	by FELSINGS	Sityclay 6	Estycky St	yay Stya	ay Siby day	y REstroy	Sity day	Shyday R	Lohyday REsin	ay Styay	Filt sity day	Studyday 1	Shyday Ritish	day Filt sity day	Filt sitty day	Shyday RE	itycky Fit sitycky	Shyday 68.4	tycky Sitycky	Shyday	Filt obyday Filt of	tycky Filt sittycky	Sity day Du	plicate BHS11 0-0.05	Duplicate BHSSS 0-002	Duplicate BHSSR 0-0.2	Duplicate BHSSR 0-0.2	Duplicate 8H338 0.05-0.15	Duplicate BHS04 1.7-2.0	Duplicate 8H329 0-0.15	Duplicate 9H110 0-01	¿ Duplicate /
pound			-																																													
exanesulfonic acid - PFHxS 0.1	NSL	L NSL	. 29	0.9	<0.1	2 0.2	<0.1	0.1	0.2	0.9 0.7	0.9	<0.1	0.2	<0.1	<0.1	<0.1 0.4	<0.1	<0.1	0.5	0.1 <0.1	<0.1	0.4	<0.1	<0.1	0.5 3.1	<0.1	0.5	0.4	<0.1 2.8	2.9	49	0.4	.8 0.5	<0.1 1	2 0.1	0.2	0.5 1	2 1.2	2.1	2.7	2.2	0.3	0.3	<0.1	<0.1	0.7	0.5	1
ctanesulfonic acid PFOS 0.1	NSL	L NSL	. 82	0.5	<0.1	4 0.1	<0.1	<0.1	0.2	0.3 7.1	0.3	<0.1	0.2	<0.1	<0.1	<0.1 <0.1	0.4	<0.1	0.9	0.2 <0.1	<0.1	0.3	<0.1	<0.1	5.5 0.4	<0.1	5.5	<0.1	<0.1 21	23	44	<0.1	.9 0.2	<0.1 7	1 <0.1	0.2	8.5 <0	1 <0.1	0.6	20	0.7	0.3	0.3	<0.1	<0.1	4.2	4.3	2
ctanoic acid PFOA 0.1	18,00	00 72,00	10 2	<0.1	<0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <	01 <0.1	<0.1	<0.1	<0.1	<0.1	0.4 <0.	1 <0.1	0.1	<0.1	<0.1 0.2	0.1	1	<0.1	1.3 <0.1	<0.1 0	3 <0.1	<0.1	0.1 <	1 <0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.4	0.2	
0.1	NSL	L NSL	<0.1	< 0.1	<0.1 <	0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.	40.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <	0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	1 ≪0.1	<0.1	<0.1	<0.1 <0.	0.2	<0.1	<0.1	0.1 <0.1	<0.1 <	1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	4
0.2	NSL	L NSL	<0.2	<0.2	<0.2 <	1.2 <0.2	<0.2	<0.2	<0.2	<0.2 <0.	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2	0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2	2 <0.2	<0.2	<0.2	<0.2 <0.	<0.2	<0.2	<0.2	0.2 <0.2	<0.2 <	2 <0.2	<0.2	<0.2 <0	2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
ve PFHxS & PFOS 0.1	1800	00 7,200	0 110	1	<0.1	5 0.3	<0.1	0.1	0.4	1 8	1	<0.1	0.4	<0.1	<0.1	<0.1 0.4	0.4	<0.1	1 (0.2 <0.1	<0.1	1	<0.1	<0.1	6 4	<0.1	6	0.4	<0.1 24	26	93	0.4	5 1	<0.1	0.1	0.4	9 1	2 1.2	2.8	23	2.9	0.6	0.6	<0.1	<0.1	4.9	4.8	
ve PFOS & PFOA 0.1	NSL	L NSL	. 83	0.5	<0.1	.5 0.1	<0.1	<0.1	0.2	0.3 7.2	0.3	<0.1	0.2	<0.1	<0.1	<0.1 <0.1	0.4	<0.1	0.9	0.2 <0.1	<0.1	0.3	<0.1	<0.1	6 0.4	<0.1	5.6	<0.1	<0.1 21	23	45	<0.1	1 0.2	<0.1 7	4 <0.1	0.2	8.6 <	1 <0.1	0.6	20	0.7	0.4	0.3	<0.1	<0.1	4.6	4.5	
ve PFAS 0.1	NSL	L NSL	110	1.4	<0.1	.8 0.3	<0.1	0.1	0.4	1.1 7.5	1.2	<0.1	0.4	<0.1	<0.1	<0.1 0.4	0.4	<0.1	1.4 (0.2 <0.1	<0.1	0.6	<0.1	<0.1	6.4 3.5	<0.1	6.1	0.4	<0.1 24	26	94	0.4	5 0.7	<0.1 8	6 0.1	0.4	9.1 1	2 1.2	2.8	23	2.9	0.7	0.6	<0.1	<0.1	5.3	5.0	- 4

TABLE SP3.2 SUMMARY OF PFAS CONCENTRATION Units are µg/Kg unless stated otherwis		WASTE CLA	SSIFICATION	ı																																					
	PQL			BH115	BH115	8H115	89116	8H116	BH116	8H117	BH117	8H117	BH117 -	89118	BH118	89118	89118	84119	89110	89130	BH120	8H120	BH121	BH121 - D AR CHIEF	89131	89171	89111	BH122	BH122	BH123	BH123	BH123	8H124	8H124	BH124 - [LAB_DUP]	8H124	BH125	BH125	BH125	H126 B	BH126
	Envirolab	5001	5002	0.08-0.2	0.3-0.5	1.9-2	0.06-0.2	0.2-0.5	0.7-1	0.06-0.2	0.4-0.7	13-15	13-15	0.06-0.2	0.2-0.4	0.7-0.1	0.07-0.2	02-05	1.9-2	0.1-0.2	0.2-0.5	0.7-1	0-0.2	0.0.2	0.4-0.5	1.7-1.95	0.01-0.16	0.2-0.35	0.7-1	0.08-0.2	0.2-0.5	0.7-1	0.05-0.15	02-05	02-05	19-2	0.12-0.3	0.3-5	0.7-1	0-0.2 0	0.4-0.5
	Services			Filt: gravelly cand	Filt: clayey cand	Sitry clay	Filt gravely cand	Filt: dayey sand	Sity day	Filt gravely cand	Fill: dayey cand	Sityclay	Sitry clay	Filt gravely cand	Fill: clayey rand	Sity day	Fill: gravelly cand	Filt: dayey cand	Sityclay	Filt govely card	Fill: dayey cand	Sityclay	Filt: siby clay	Fill: siby day	Filt dayey cand	Sity day	Filt: growthy cand	Filt gowlly card	Sityclay	Filt gravely card	Filt clayey cand	Sityclay	RE growtly cand	Fill: dayey cand	Filt dayey cand	Sibyday	Fit: govely card	Filt dayey cand			t sityclay
PFAS Compound				•																																					
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	NSL	< 0.1	< 0.1	< 0.1	<0.1	0.2	0.9	<0.1	0.2	1.9	1.9	<0.1	0.1	1.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	1.9	1.7	33	0.2	0.9	1.1	3.8	<0.1	1.2	5.8	0.2	0.3	0.3	<0.1	0.1	1.0	7.1	7.1	32
Perfluorooctanesulfonic acid PFOS	0.1	NSL	NSL	< 0.1	0.1	< 0.1	<0.1	0.1	0.3	<0.1	<0.1	0.3	0.2	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.2	2.2	<0.1	44	49	1.9	<0.1	<0.1	0.2	1.1	<0.1	2.0	1.0	<0.1	0.5	0.5	<0.1	<0.1	0.6	0.1	190	14
Perfluorooctanoic acid PFQA	0.1	18,000	72,000	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.2	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.7	0.5
6:2 FTS	0.1	NSL	NSL	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ·	<0.1
8:2 FTS	0.2	NSL	NSL	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Positive PFHxS & PFOS	0.1	1800	7,200	< 0.1	0.1	<0.1	<0.1	0.4	1	<0.1	0.2	2	2	<0.1	0.1	1	<0.1	<0.1	< 0.1	0.2	2	<0.1	46	51	35	0.2	1	1	5	<0.1	3.1	6.8	0.2	0.8	0.9	<0.1	0.1	1.6	7.2	200	46
Total Positive PFOS & PFOA	0.1	NSL	NSL	< 0.1	0.1	<0.1	<0.1	0.1	0.3	<0.1	<0.1	0.3	0.2	<0.1	<0.1	0.2	<0.1	<0.1	< 0.1	0.2	2.2	<0.1	44	50	2	<0.1	<0.1	0.2	1.1	<0.1	2.0	1.1	<0.1	0.5	0.5	<0.1	<0.1	0.6	0.1	190	14
Total Positive PFAS	0.1	NSL	NSL	< 0.1	0.1	<0.1	<0.1	0.4	1.1	<0.1	0.2	2.1	2.1	<0.1	0.1	1.3	<0.1	<0.1	<0.1	0.2	2.4	<0.1	46	51	35	0.2	0.9	1.4	4.9	<0.1	3.1	7.0	0.2	0.8	0.9	<0.1	0.1	1.6	7.2	200	46
Result above SCC1 Criteria Result above SCC2 Criteria																																									

TABLE SP4

SUMMARY OF PFAS CONCENTRATIONS IN TCLP LEACHATE - WASTE CLASSIFICATION

Units are µg/L unless stated otherwise.

	PQL																							
	Envirolab Services	TCLP1	TCLP2	BH101 0-0.1	BH102 0-0.2	BH103 0.2-0.4	BH103 - [LAB_DUP] 0.2-0.4	BH104 0-0.1	BH107 0-0.2	BH107 0.5-0.7	BH109 0-0.15	BH109 0.2-0.5	BH110 0-0.1	BH111 0-0.1	BH111 0.2-0.5	BH113 0-0.2	BH113 - [LAB_DUP] 0-0.2	BH114 0-0.1	BH114 1.8-2.0	BH117 1.3-1.5	BH121 0-0.2	BH121 0.4-0.5	BH122 0.7-1.0	BH126 0-0.2
PFAS Compound	Services			0 0.1	0 0.2	0.2 0.4	0.2 0.4	0 0.1	0 0.2	0.5 0.7	0 0.13	0.2 0.5	0 0.1	0 0.1	0.2 0.3	0 0.2	0 0.2	0 0.1	1.0 2.0	1.5 1.5	0 0.2	0.4 0.5	0.7 1.0	0 0.2
Perfluorohexanesulfonic acid - PFHxS	0.01	NSL	NSL	0.54	<0.01	0.02	0.01	0.02	0.02	<0.01	<0.01	0.07	<0.01	0.05	0.32	0.04	0.04	<0.01	0.07	0.06	0.05	0.25	0.15	0.33
Perfluorooctanesulfonic acid PFOS	0.01	NSL	NSL	0.94	0.07	0.02	0.01	0.05	0.01	0.01	0.04	<0.01	0.06	0.14	0.41	0.06	0.07	0.08	0.03	0.01	0.54	0.03	0.03	2.8
Perfluorooctanoic acid PFOA	0.01	500	2,000	0.04	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03
6:2 FTS	0.01	NSL	NSL	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
8:2 FTS	0.02	NSL	NSL	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Positive PFHxS & PFOS	0.01	50	200	1.5	0.07	0.04	0.02	0.06	0.03	0.01	0.04	0.07	0.06	0.2	0.74	0.1	0.11	0.08	0.1	0.08	0.59	0.28	0.17	3.1
Total Positive PFOS & PFOA	0.01	NSL	NSL	0.98	0.07	0.02	0.01	0.05	0.01	0.01	0.04	<0.01	0.06	0.14	0.43	0.06	0.07	0.08	0.03	0.01	0.54	0.03	0.03	2.8
Total Positive PFAS	0.01	NSL	NSL	1.5	0.07	0.04	0.02	0.06	0.03	0.01	0.04	0.07	0.06	0.2	0.75	0.1	0.11	0.08	0.1	0.08	0.59	0.28	0.17	3.2

Result above TCLP1 Criteria Bold Result above TCLP2 Criteria Bold

PQL Envirola	ı h		1.0 Perfluorohexanesulfonic acid - PFHxS	Perfluorooctanesulfonic acid PFOS	1.0 Perfluorooctanoic acid PFOA	6.2 FTS	8.2 FTS	Total Positive PFHxS & PFOS	1. Total Positive PFOS & PFOA	1.0 Total Positive PFAS
PQL Envirola			0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1
Intra	BH111	0-0.1	2.8	21	0.2	<0.1	<0.2	24	21	24
laboratory	SDUP105	-	2.7	20	0.1	<0.1	<0.2	23	20	23
duplicate	MEAN		2.75	20.5	0.15	nc	nc	23.5	20.5	23.5
	RPD %		4%	5%	67%	nc	nc	4%	5%	4%
Intra	BH113	0-0.2	1.2	7.1	0.3	<0.1	<0.2	8.3	7.4	8.6
laboratory	SDUP106	-	2.2	0.7	<0.1	<0.1	<0.2	2.9	0.7	2.9
duplicate	MEAN		1.7	3.9	0.175	nc	nc	5.6	4.05	5.75
	RPD %		59%	164%	143%	nc	nc	96%	165%	99%
Intra	BH108	0-0.2	0.4	0.3	<0.1	<0.1	<0.2	0.6	0.3	0.6
aboratory	SDUP107	-	0.3	0.3	0.1	<0.1	<0.2	0.6	0.4	0.7
duplicate	MEAN		0.35	0.3	0.075	nc	nc	0.6	0.35	0.65
	RPD %		29%	0%	67%	nc	nc	0%	29%	15%
Intra	BH103	0.05-0.15	0.1	<0.1	<0.1	<0.1	<0.2	0.1	<0.1	0.1
laboratory	SDUP112	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
duplicate	MEAN		0.075	nc	nc	nc	nc	0.075	nc	0.075
	RPD %		67%	nc	nc	nc	nc	67%	nc	67%
Inter	BH104	1.7-2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
laboratory	SDUP101 (PFAS)	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
duplicate	MEAN		nc	nc	nc	nc	nc	nc	nc	nc
	RPD %		nc	nc	nc	nc	nc	nc	nc	nc
Inter	BH109	0-0.15	0.5	5.5	0.4	<0.1	<0.2	6	6	6.4
laboratory	SDUP102 (PFAS)	-	0.7	4.2	0.4	<0.1	<0.2	4.9	4.6	5.3
duplicate	MEAN		0.6	4.85	0.4	nc	nc	5.45	5.3	5.85
	RPD %		33%	27%	0%	nc	nc	20%	26%	19%
Inter	BH110	0-0.1	0.5	5.5	0.1	<0.1	<0.2	6	5.6	6.1
aboratory	SDUP103 (PFAS)	-	0.5	4.3	0.1	<0.1	<0.2	4.8	4.5	5
duplicate	MEAN		0.5	4.9	0.15	nc	nc	5.4	5.05	5.55
	RPD %		0%	24%	67%	nc	nc	22%	22%	20%
Inter	BH112	0-0.1	1.8	2.9	0.3	<0.1	<0.2	4.7	3.1	5
laboratory	SDUP104 (PFAS)	-	1.6	2.7	0.2	<0.1	<0.2	4.3	2.9	4.5
duplicate	MEAN		1.7	2.8	0.25	nc	nc	4.5	3	4.75
	RPD %		12%	7%	40%	nc	nc	9%	7%	11%
Trip	TB-S101	-	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
Blank	15-17/11/2023	-	VU.1	\U.1	\U.1	\U.1	\U. ∠	\U.1	\U.1	\U.1
Field	FR-101-SPT	μg/L	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.0

Groundwater

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ADWG: Australian Drinking Water Guidelines

ANZG Australian and New Zealand Guidelines PCE: Perchloroethylene (Tetrachloroethylene or Tetrachloroethene)

PQL:

B(a)P: Benzo(a)pyrene

CRC: Cooperative Research Centre **Ecological Screening Levels** ESLs: GIL: **Groundwater Investigation Levels** HILs: **Health Investigation Levels** HSLs: **Health Screening Levels**

 $\textbf{HSL-SSA:} \ \ \textbf{Health Screening Level-SiteSpecific Assessment}$

NA: Not Analysed NC: Not Calculated

NEPM: National Environmental Protection Measure NHMRC: National Health and Medical Research Council

NL: **Not Limiting** No Set Limit NSL:

OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PAHs: Polycyclic Aromatic Hydrocarbons

ppm: Parts per million RS: Rinsate Sample RSL: **Regional Screening Levels**

PCBs: Polychlorinated Biphenyls

SAC: Site Assessment Criteria SSA: Site Specific Assessment

SSHSLs: Site Specific Health Screening Levels

Practical Quantitation Limit

TB: Trip Blank

TCA: 1,1,1 Trichloroethane (methyl chloroform) TCE: Trichloroethylene (Trichloroethene)

TS: Trip Spike

TRH: **Total Recoverable Hydrocarbons**

UCL: Upper Level Confidence Limit on Mean Value **USEPA** United States Environmental Protection Agency **VOCC:** Volatile Organic Chlorinated Compounds

WHO: World Health Organisation

TABLE G1 GROUNDWATER LABORATORY RESULTS COMPARED TO HSLs All data in $\mu g/L$ unless stated otherwise

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	
PQL - Envirolab Services				10	50	1	1	1	2	1	PID
NEPM 2013 - Land Use Ca	tegory					HSL-D: CC	MMERCIA	L/INDUSTRIAL			
Sample Reference	Water Depth	Depth Category	Soil Category								
MW102	3.23	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0.2
MW102 - [LAB_DUP]	-	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	-
MW107	2.13	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0.2
MW114	3.21	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0.6
MW121	4.52	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0.1
MW126	5.5	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	0.4
WDUP101	-	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	-
WDUP102	-	2m to <4m	Sand	<10	<50	<1	<1	<1	<2	<1	-
Total Number of Samples				8	8	8	8	8	8	8	5
Maximum Value				<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.6</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>0.6</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>0.6</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>0.6</td></pql<></td></pql<>	<pql< td=""><td>0.6</td></pql<>	0.6

Concentration above the SAC
Site specific assesment (SSA) required
Concentration above the PQL

Bold

The guideline corresponding to the elevated value is highlighted in grey in the Groundwater Assessment Criteria Table below

HSL GROUNDWATER ASSESSMENT CRITERIA

Sample Reference	Water Depth	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
MW102	3.23	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
MW102 - [LAB_DUP]	-	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
MW107	2.13	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
MW114	3.21	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
MW121	4.52	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
MW126	5.5	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
WDUP101	-	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL
WDUP102	-	2m to <4m	Sand	6000	NL	5000	NL	NL	NL	NL

TABLE G2 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO HUMAN CONTACT GILS All results in $\mu g/L$ unless stated otherwise.

	PQL Envirolab	Recreational	MW102	141400	MW107	141407	SAM MW114	PLES MW121	MW126	141426	WDUP101	WDUP102
	Services	(10 x NHMRC ADWG)	WW102	MW102 - [LAB DUP]	MW107	MW107 - [LAB DUP]	MW114	MW121	WW126	MW126 - [LAB DUP]	WDUP101	WDUP102
Inorganic Compounds and Parameters	I	(20111111111111111111111111111111111111		[2.12_20.1]		[2.12_20.1]				[2.15_50.]		
рН		6.5 - 8.5	7.1	NA	4.4	NA	6.4	6.3	6.4	6.5	NA	NA
Electrical Conductivity (μS/cm)	1	NSL	21000	NA	27000	NA	30000	22000	30000	29000	NA	NA
Metals and Metalloids	1	100	-1	-1	10	[NIT]	-1	-1	-1	NA	-1	-1
Arsenic (As III) Cadmium	0.1	100 20	<1 <0.1	<1 <0.1	10 0.2	[NT]	<1 0.2	<1 0.2	<1 <0.1	NA NA	<1 <0.1	<1 <0.2
Chromium (total)	1	500	<1	<1	2	[NT]	<1	<1	<1	NA NA	<1	<1
Copper	1	20000	<1	1	17	[NT]	3	2	5	NA NA	5	<2
Lead	1	100	<1	<1	14	[NT]	<1	<1	<1	NA	<1	<1
Total Mercury (inorganic)	0.05	10	<0.05	[NT]	<0.05	<0.05	<0.05	<0.05	<0.05	NA	<0.05	<0.05
Nickel	1	200	<1	1	380	[NT]	19	6	5	NA	5	5
Zinc	1	30000	8	8	580	[NT]	20	19	21	NA	20	18
Monocyclic Aromatic Hydrocarbons (BTEX Com		10	-1	-1	-1	NA	-1	-1	-1	NA	<1	-1
Benzene Toluene	1 1	8000	<1 <1	<1	<1 <1	NA NA	<1 <1	<1	<1 <1	NA NA	<1	<1 <1
Ethylbenzene	1	3000	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
m+p-xylene	2	NSL	<2	<2	<2	NA	<2	<2	<2	NA	<2	<2
o-xylene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Total xylenes	2	6000	<2	<2	<2	NA	<2	<2	<2	NA	<2	<2
Volatile Organic Compounds (VOCs), including	chlorinated VOC	5										
Dichlorodifluoromethane	10	NSL	<10	<10	<10	NA	<10	<10	<10	NA	<10	<10
Chloromethane	10	NSL	<10	<10	<10	NA	<10	<10	<10	NA	<10	<10
Vinyl Chloride	10	3	<10	<10	<10	NA	<10	<10	<10	NA	<10	<10
Bromomethane	10	NSL	<10	<10	<10	NA	<10	<10	<10	NA NA	<10	<10
Chloroethane	10	NSL NSL	<10	<10 <10	<10	NA NA	<10	<10	<10 <10	NA NA	<10 <10	<10
Trichlorofluoromethane 1,1-Dichloroethene	10	300	<10 <1	<10 <1	<10 <1	NA NA	<10 <1	<10 <1	<10 <1	NA NA	<10 <1	<10 <1
Trans-1,2-dichloroethene	1	600	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
1,1-dichloroethane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA NA	<1	<1
Cis-1,2-dichloroethene	1	600	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Bromochloromethane	1	2500	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Chloroform	1	2500	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
2,2-dichloropropane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,2-dichloroethane	1	30	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,1,1-trichloroethane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,1-dichloropropene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Cyclohexane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Carbon tetrachloride Benzene	1	30 10	<1 <1	<1 <1	<1 <1	NA NA	<1 <1	<1	<1 <1	NA NA	<1	<1 <1
Dibromomethane	1	NSL	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
1,2-dichloropropane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA NA	<1	<1
Trichloroethene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Bromodichloromethane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
trans-1,3-dichloropropene	1	1000	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
cis-1,3-dichloropropene	1	1000	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,1,2-trichloroethane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Toluene	1	8000	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,3-dichloropropane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Dibromochloromethane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,2-dibromoethane	1	NSL	<1 <1	<1 <1	<1	NA NA	<1 <1	<1	<1 <1	NA NA	<1 <1	<1
Tetrachloroethene 1,1,1,2-tetrachloroethane	1	500 NSL	<1	<1	<1 <1	NA NA	<1	<1	<1	NA NA	<1	<1 <1
Chlorobenzene	1	3000	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
Ethylbenzene	1	3000	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Bromoform	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
m+p-xylene	2	NSL	<2	<2	<2	NA	<2	<2	<2	NA	<2	<2
Styrene	1	300	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,1,2,2-tetrachloroethane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
o-xylene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,2,3-trichloropropane	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Isopropylbenzene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Bromobenzene n-propyl benzene	1	NSL NSL	<1 <1	<1	<1 <1	NA NA	<1 <1	<1	<1 <1	NA NA	<1 <1	<1 <1
2-chlorotoluene	1	NSL NSL	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
4-chlorotoluene	1	NSL	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
1,3,5-trimethyl benzene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Tert-butyl benzene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,2,4-trimethyl benzene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,3-dichlorobenzene	1	200	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Sec-butyl benzene	1	NSL	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
1,4-dichlorobenzene	1	400 NS	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
4-isopropyl toluene	1	NSL 15000	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
1,2-dichlorobenzene n-butyl benzene	1	15000 NSL	<1 <1	<1 <1	<1 <1	NA NA	<1 <1	<1	<1 <1	NA NA	<1 <1	<1 <1
1,2-dibromo-3-chloropropane	1	NSL NSL	<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
1,2,4-trichlorobenzene	1		<1	<1	<1	NA NA	<1	<1	<1	NA NA	<1	<1
1,2,3-trichlorobenzene	1	300	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Hexachlorobutadiene	1	7	<1	<1	<1	NA	<1	<1	<1	NA	<1	<1
Polycyclic Aromatic Hydrocarbons (PAHs)												
Naphthalene	0.2	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	1
Acenaphthylene	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
Acenaphthene	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
Fluorene	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
Phenanthrene	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
Anthracene	0.1	NSL	<0.1	<0.1	<0.1	NA NA	<0.1	<0.1	<0.1	NA NA	<0.1	<0.1
Fluoranthene	0.1	NSL NSL	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1 <0.1
Pyrene Benzo(a)anthracene	0.1	NSL NSL	<0.1	<0.1	<0.1	NA NA	<0.1	<0.1	<0.1	NA NA	<0.1	<0.1
Chrysene	0.1	NSL NSL	<0.1	<0.1	<0.1	NA NA	<0.1	<0.1	<0.1	NA NA	<0.1	<0.1
Benzo(b,j+k)fluoranthene	0.2	NSL	<0.2	<0.2	<0.2	NA NA	<0.1	<0.1	<0.2	NA NA	<0.2	<0.2
Benzo(a)pyrene	0.1	0.1	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
Dibenzo(a,h)anthracene	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	NA	<0.1	<0.1
	0.1	NSL	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1		<0.1	<0.1
Benzo(g,h,i)perylene	0.1	1452	10.1	10.1	₹0.1	INA	٦٥.1	₹0.1	₹0.1	NA	₹0.1	₹0.1

Concentration above the SAC Concentration above the PQL GIL >PQL VALUE Bold Red

TABLE G3 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILS SAC All results in µg/L unless stated otherwise. PQL SAMPLES ANZG Envirolab 2018 MW102 MW107 MW107 MW114 MW121 MW126 WDUP101 WDUP102 Services Marine Waters [LAB_DUP] [LAB_DUP] [LAB_DUP] Inorganic Compounds and Parameters 7 - 8.5 7.1 NA NA NA NA Electrical Conductivity (μS/cm) NSL 21000 NA 27000 NA 30000 22000 30000 29000 NA NA Metals and Metalloids Arsenic (As III) 1 2.3 <1 <1 [NT] NA <1 <1 0.2 Cadmium 0.1 0.7 <0.1 <0.1 [NT] 0.2 0.2 <0.1 NA <0.1 <0.2 Chromium (SAC for Cr III adopted) 27 <1 <1 [NT] <1 <1 <1 NA <1 <1 1 NA Copper 1 1.3 <1 1 17 [NT] <2 <1 ead 1 4.4 <1 <1 14 [NT] <1 <1 NA <1 <1 Total Mercury (inorganic) 0.05 0.1 < 0.05 [NT] <0.05 < 0.05 < 0.05 < 0.05 < 0.05 NA < 0.05 < 0.05 Nickel <1 380 [NT] 19 6 5 NA 5 5 Zinc [NT] Monocyclic Aromatic Hydrocarbons (BTEX Compounds) 500 <1 <1 NA NA <1 <1 <1 <1 <1 <1 Benzene 180 Toluene <1 <1 <1 NA <1 <1 <1 NA <1 <1 Ethylbenzene 1 5 <1 <1 <1 NA <1 <1 <1 NA <1 <1 m+p-xylene 75 <2 <2 <2 NA <2 <2 <2 NA <2 <2 o-xylene 350 <1 <1 NA <1 <1 <1 NA <1 <1 Total xylenes NSL <2 <2 <2 NA <2 <2 <2 NA <2 <2 Volatile Organic Compounds (VOCs), including chlorinated VOCs NSL <10 <10 <10 <10 <10 <10 NA <10 <10 Dichlorodifluoromethane 10 NA Chloromethane 10 NSL <10 <10 <10 NA <10 <10 <10 NA <10 <10 Vinyl Chloride 10 100 <10 <10 <10 NA <10 <10 <10 NA <10 <10 10 NSL <10 <10 <10 NA <10 <10 <10 NA <10 <10 Chloroethane 10 NSL <10 <10 <10 NA <10 <10 <10 NA <10 <10 Trichlorofluoromethane 10 NSL <10 <10 <10 NA <10 <10 <10 NA <10 <10 1,1-Dichloroethene 700 <1 <1 <1 NA <1 <1 <1 NA <1 <1 Trans-1.2-dichloroethene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1.1-dichloroethane 250 <1 <1 <1 NA <1 <1 <1 NA <1 <1 Cis-1,2-dichloroethene NSL <1 <1 NA NA <1 <1 <1 <1 <1 <1 NSL Bromochloromethane <1 <1 <1 NA <1 <1 <1 NA <1 <1 370 <1 NA <1 <1 NA <1 Chloroform <1 <1 <1 <1 2,2-dichloropropane NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1 1,2-dichloroethane 1900 <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,1,1-trichloroethane 270 <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,1-dichloropropene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 Cyclohexane NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 240 <1 NA <1 NA Carbon tetrachloride <1 <1 <1 <1 <1 <1 500 <1 <1 <1 NA <1 <1 <1 NA <1 Benzene <1 Dibromomethane NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,2-dichloropropane 900 <1 <1 <1 NA <1 <1 <1 NA <1 <1 Trichloroethene 330 <1 <1 <1 NA <1 <1 <1 NA <1 <1 romodichloromethane NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 NSL NA <1 trans-1,3-dichloropropene <1 <1 <1 NA <1 <1 <1 <1 cis-1,3-dichloropropene NSL <1 <1 NA NA <1 <1 <1 <1 <1 <1 1,1,2-trichloroethane 1900 <1 <1 <1 NA <1 <1 <1 NA <1 <1 Toluene 1 180 <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,3-dichloropropane 1100 <1 <1 <1 NA <1 <1 <1 NA <1 <1 Dibromochloromethane NSL <1 NA <1 <1 <1 <1 <1 <1 NSL 1,2-dibromoethane <1 <1 <1 NA <1 <1 <1 <1 <1 Tetrachloroethene 70 <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,1,1,2-tetrachloroethane NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 Chlorobenzene 55 <1 <1 <1 NA <1 <1 <1 NA <1 <1 Ethylbenzene <1 <1 <1 NA <1 <1 <1 NA <1 <1 Bromoform NSL <1 NA NA <1 <1 <1 <1 <1 <1 <1 75 <2 <2 <2 NA <2 <2 <2 NA <2 m+p-xylene NSL <1 NA <1 <1 NA <1 <1 <1 <1 <1 Styrene 1,1,2,2-tetrachloroethane 400 <1 <1 <1 <1 NA <1 <1 <1 NA <1 o-xylene 350 <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,2,3-trichloropropane NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 Isopropylbenzene 30 <1 <1 <1 NA <1 <1 <1 NA <1 <1 NSL NA NA <1 <1 <1 <1 <1 <1 <1 <1 Bromobenzene n-propyl benzene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 2-chlorotoluene NSL <1 NA NA <1 <1 <1 <1 <1 <1 <1 4-chlorotoluene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,3,5-trimethyl benzene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 Tert-butyl benzene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,2,4-trimethyl benzene NSL <1 NA <1 <1 <1 <1 <1 <1 1,3-dichlorobenzene 260 <1 <1 NA <1 <1 NA <1 <1 <1 <1 Sec-butyl benzene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,4-dichlorobenzene 60 <1 <1 <1 NA <1 <1 <1 NA <1 <1 4-isopropyl toluene 1 NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 1,2-dichlorobenzene 160 <1 <1 <1 NA <1 <1 <1 NA <1 <1 NSL NA NA n-butyl benzene <1 <1 <1 <1 <1 <1 <1 <1 1,2-dibromo-3-chloropropane <1 <1 <1 <1 <1 <1 <1 1,2,4-trichlorobenzene 20 NA NA <1 <1 <1 <1 <1 <1 <1 <1 Hexachlorobutadiene NSL <1 <1 <1 NA <1 <1 <1 NA <1 <1 2.3-trichlorobenzene Polycyclic Aromatic Hydrocarbons (PAHs) 50 Naphthalene < 0.1 <0.1 <0.1 <0.1 <0.1 Acenaphthylene 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 Acenaphthene NSL 0.1 < 0.1 <0.1 <0.1 NA <0.1 < 0.1 <0.1 NA <0.1 < 0.1 Fluorene 0.1 NSL < 0.1 < 0.1 < 0.1 NA < 0.1 < 0.1 < 0.1 NA < 0.1 < 0.1 Phenanthrene 0.1 0.6 < 0.1 < 0.1 < 0.1 NA < 0.1 < 0.1 < 0.1 NA < 0.1 < 0.1 Anthracene 0.1 0.01 < 0.1 <0.1 <0.1 NA < 0.1 < 0.1 <0.1 NA <0.1 < 0.1 Fluoranthene 0.1 <0.1 <0.1 <0.1 NA <0.1 <0.1 <0.1 NA <0.1 <0.1 0.1 NSL <0.1 <0.1 <0.1 NA <0.1 <0.1 <0.1 NA <0.1 <0.1 Pyrene Benzo(a)anthracene 0.1 NSL < 0.1 <0.1 <0.1 NA < 0.1 <0.1 <0.1 NA <0.1 <0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Chrysene NSL NA < 0.1 NA < 0.1 Benzo(b,j+k)fluoranthene 0.2 NSL < 0.2 < 0.2 < 0.2 NA < 0.2 < 0.2 < 0.2 NA < 0.2 < 0.2 Benzo(a)pyrene 0.1 0.1 < 0.1 <0.1 <0.1 NA < 0.1 < 0.1 <0.1 NA <0.1 < 0.1 Indeno(1,2,3-c,d)pyrene 0.1 NSL <0.1 <0.1 <0.1 NA <0.1 <0.1 <0.1 NA <0.1 <0.1 0.1 NSL <0.1 <0.1 NA <0.1 <0.1 NA <0.1 <0.1 Dibenzo(a,h)anthracene <0.1 <0.1 Benzo(g,h,i)perylene <0.1 <0.1 VALUE Concentration above the SAC Concentration above the PQL Bold GIL >PQL Red

TABLE QG1 GROUNDWATER QA/QC	SUMMARY																																																						
		Dichlorodifluoromethane	Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane		1,1-Dichloroethene	Trans-1,2-dichloroethene	1,1-dichloroethane	Cis-1,2-dichloroethene	Bromochloromethane	Chloroform	2,2-dichloropropane	1,2-dichloroethane	1,1,1-trichloroethane	1,1-dichloropropene	Cyclohexane	Carbon tetrachloride	Benzene	Dibromomethane	1,2-dichloropropane	Trichloroethene	Bromodichloromethane	trans-1,3-dichloropropene	cis-1,3-dichloropropene	1,1,2-trichloroethane	Toluene 1,3-dichloropropane	Dibromochloromethane	1,2-dibromoethane	Tetrachloroethene	1,1,1,2-tetrachloroethane	Chlorobenzene	Ethylbenzene	Bromoform m+p-xvlene	Styrene	1,1,2,2-tetrachloroethane	o-xylene	1,2,3-trichloropropane	Isopropylbenzene	Bromobenzene n-probyl benzene	2-chlorotoluene	4-chlorotoluene	1,3,5-trimethyl benzene	Tert-butyl benzene	1,2,4-trimethyl benzene	1,3-dichlorobenzene	Sec-butyl benzene	4-isopropyl toluene	1,2-dichlorobenzene	n-butyl benzene	1,2-dibromo-3-chloropropane	1,2,4-trichlorobenzene	Hexachlorobutagiene 1.2,3-trichlorobenzene
	PQL Envirolab SYD	10	10	10	10	10	10	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 2	2 1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1 1
	PQL Envirolab VIC	10		10	10	10	10	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 2	2 1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1 1
																																																						_	
Intra	MW126	<10	<10	<10	<10	<10	<1	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	(1 <1	<1	<1	<1	<1	<1	<1	<1 <	2 <1	<1	<1	<1	<1 +	<1 <	1 <1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1	<1	<1	<1 <1
laboratory	WDUP101	<10	_	<10	<10	<10	<1	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <	<1 <1	<1	<1	<1	<1	<1	<1	<1 <	2 <1	<1	<1	<1	<1 +	<1 <	1 <1	<1	<1	<1	<1	<1	<1 <	1 <1	<1	<1			<1 <1
duplicate	MEAN	nc	_	nc	nc	nc	n	ıc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc r	nc nc	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc i	nc n	c nc	nc	nc	nc	nc	nc	nc r	c nc	nc	nc	nc	nc	nc nc
aupiicate	RPD %	nc		nc	nc	nc	n/	ic .	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc r	nc no	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc i	nc no	c nc	nc	nc	nc	nc	nc	nc r	c nc	nc	nc	nc	nc .	nc nc
	111 0 70	_	TIC		TIC	TIC	- 110	ic	TIC .	TIC .	TIC .	TIC .	TIC	TIC .	TIC	TIC .	TIC .	TIC .	TIC .	TIC .	TIC .	TIC	TIC .	TIC .	TIC .	iic	TIC .	iic I	ic iic	, IIC	IIC	TIC	IIC	110	TIC .	ne m	C IIC	TIC	170	TIC .	nc I	ne m	c III	IIC	110	110	TIC .	IIC	iic I	ic IIC	_	_		TIC I	
Inter	MW121	<10	_	<10	<10	<10	-1	10	<i>c</i> 1	c1	<i>c</i> 1	c1	<i>c</i> 1	<1	<1	<1	<i>c</i> 1	<i>c</i> 1	<i>c</i> 1	<i>c</i> 1	<i>c</i> 1	<i>c</i> 1	<i>c</i> 1	-1	-1	<1	<1	<1 <	<1 <1	-1	<1	<1	-1	<1	<i>c</i> 1	<1 <	2 <1	-1	-1	<i>c</i> 1	<1 +	<1 <1	1 /1	<1	<1	<i>c</i> 1	<1	<i>c</i> 1	<1 <	1 <1	_	_	_	_	<1 <1
laboratory	WDUP102	<10		<10	<10	<10	<1	10	~1 -1	-1	~1	-1	-1	-1	-1	-1	-1	~1 -1	~1 ~1	~1 -1	~1	-1	-1	-1	-1	-1	~1	1 2	1 1		- 1	<1	-1	-1	-1	-1 ·	2 <1	<1	-1	-1	-1	<1 <	1 /1	×1	-1	~1 ~1	-1	-1	-1 -	1 /1	<1				<1 <1
duplicate	MEAN	nc		-10	110	10	1		, I	~1		7.1	74	^±	-1	7.1	, i	~1	~±	~±	~1	72	71	~1	72	71	72			. \1	- 1	\1	1	-1	72	-1 \	2 1	- 1	-1	, I	72 7	2 .		1	-1	71		71	`1 \	2 1	- 1	- 1	-1	,1 ,	
uupiicate		_	_	IIC	IIC	nc	ne	IL.	IIC	IIC	IIC	IIC .	IIC .	IIC	IIC	IIC	IIC	IIL	IIC	IIC	IIC	IIC	IIC	IIC	IIC	IIC	IIC	IIC I	ic no	nc	nc	nc	nc	IIC	IIC	nc n	c nc	nc	HC	IIC	IIC I	nc no	L nc	nc	nc	IIC	IIC	IIC	IIC F	ic nc	nc	nc	IIC	IIC I	ic nc
	RPD %	nc	_		ric	nc	ne	ic	nc	nc	пс	nc	ne	nc	пс	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc r	nc no	nc	nc	nc	nc	nc	nc	nc n	c nc	nc	nc	nc	nc i	nc n	c nc	nc	nc	nc	nc	nc	nc r		_	_			nc nc
r:-Id	TD 14/404	_			_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	\vdash	_	_	_	_	\vdash	_	_	_	_	_	_	-	_	_	_	_	_	_	_		_
rieiu	TB-W101		-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-																				-	-	
RIANK	24/11/2023																																																						

		TRH C6 - C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-Xylene	Naphthalene	Acenaphthylene	Acenaph-thene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthra-cene	Benzo(g,h,i)perylene	Arsenic	Cadmium	Chromium VI	Copper	Lead	Mercury	Nickel	Zinc
	PQL Envirolab SYD	10	50	100	100	1	1	1	2	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
	PQL Envirolab VIC	10	50	100	100	1.0	1.0	1.0	2.0	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1	1
Intra	MW126	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	5	<1	< 0.05	5	21
laboratory	WDUP101	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	5	<1	<0.05	5	20
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	5	nc	nc	5	20.5
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0%	nc	nc	0%	5%
Inter	MW121	<10	<50	<100	<100	<1	<1	<1	<2	<1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	< 0.1	<0.1	<1	0.2	<1	2	<1	< 0.05	6	19
laboratory	WDUP102	<10	<50	<100	<100	<1	<1	<1	<2	<1	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	< 0.1	<0.1	<1	<0.2	<1	<2	<1	< 0.05	5	18
duplicate	MEAN	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.55	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.125	nc	1.25	nc	nc	5.5	18.5
	RPD %	nc	nc	nc	nc	nc	nc	nc	nc	nc	164%	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	120%	nc	120%	nc	nc	18%	5%
Field	TB-W101	<10	160	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	<1	<1	<0.05	<1	2
Blank	24/11/2023	120	100	1200	1200	'.	,,	1.			10.12	10.1	10.12	-0.1	10.12	10.1	-0.1	10.12	10.1	10.12	10.2	10.1	-0.1	-0.1	10.12		10.12	12	- 1	1.	10.03	12	
Trip	TS-W101	-	-	-	-	93%	115%	111%	111%	118%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	_	-	
Spike	24/11/2023					3376	115/6	111/0	111/0	110/6	1																						
	Result outside of QA/	QC acce	eptance	criteria		Value																											

Preliminary Site Investigation Bankstown Airport, Bankstown, NSW E35614P2

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

CT: Contaminant Threshold Fluorotelomer sulfonic acid

NA: Not Analysed NC: Not Calculated

NEMP National Environmental Management Plan

NSL: No Set Limit

PFAS Per- and polyfluoroalkyl substances
PFHxS Perfluorohexanesulfonic acid
PFOA Perfluorooctanoic acid
PFOS Perfluorooctanesulfonic acid
PQL: Practical Quantitation Limit

RS: Rinsate Sample

SAC: Site Assessment Criteria

SCC: Specific Contaminant Concentration

TB: Trip Blank

TCLP: Toxicity Characteristics Leaching Procedure

TS: Trip Spike

UCL: Upper Level Confidence Limit on Mean Value

Table Specific Explanations:

Groundwater Ecology Tables:

- 95% refers to a concentration that has been derived to protect 95% of aquatic species
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

Waste Classification and TCLP Table:

- Data assessed using the Addendum to the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014) -October 2016

TABLE GP1 SUMMARY OF PFAS CONCENTRATIONS IN GROUNDWATER - HUMAN HEALTH All results in $\mu g/L$ unless stated otherwise.

	PQL	NEMP 2020				SAMPLES			
	Envirolab		MW102	MW107	MW114	MW121	MW126	WDUP101	WDUP102
	Services	Recreational							
PFAS Compound									
Perfluorobutanesulfonic acid	0.0004	NSL	0.026	<0.0004	0.0099	0.017	0.0064	0.0066	0.017
Perfluoropentanesulfonic acid	0.001	NSL	0.027	<0.001	0.003	0.013	0.006	0.006	0.014
Perfluorohexanesulfonic acid - PFHxS	0.0002	NSL	0.14	<0.0002	0.0073	0.018	0.019	0.018	0.019
Perfluoroheptanesulfonic acid	0.001	NSL	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	0.0002	NSL	0.0031	<0.0002	0.038	0.002	0.011	0.011	0.002
Perfluorodecanesulfonic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorobutanoic acid	0.002	NSL	<0.02	<0.02	<0.02	<0.01	<0.002	<0.002	<0.004
Perfluoropentanoic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorohexanoic acid	0.0004	NSL	0.002	<0.0004	0.003	<0.0004	0.0051	0.0055	<0.0004
Perfluoroheptanoic acid	0.0004	NSL	<0.0004	<0.0004	<0.0004	<0.0004	0.0005	0.0005	<0.0004
Perfluorooctanoic acid PFOA	0.0002	10	0.0004	<0.0002	0.0008	0.0002	0.0006	0.0005	0.0002
Perfluorononanoic acid	0.001	NSL	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorodecanoic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	0.005	NSL	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	0.01	NSL	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorotetradecanoic acid	0.05	NSL	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
4:2 FTS	0.001	NSL	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
6:2 FTS	0.0004	NSL	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
8:2 FTS	0.0004	NSL	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
10:2 FTS	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonamide	0.01	NSL	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
N-Methyl perfluorooctane sulfonamide	0.05	NSL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	0.05	NSL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	0.5	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf-amid oacetic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf-amid oacetic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Total Positive PFHxS & PFOS	0.0002	2	0.14	<0.0002	0.046	0.02	0.03	0.029	0.021
Total Positive PFOS & PFOA	0.0002	NSL	0.0035	<0.0002	0.039	0.002	0.012	0.011	0.0022
Total Positive PFAS	0.0002	NSL	0.2	<0.0002	0.064	0.05	0.049	0.048	0.052

Positive PFAS result PFAS result above the SAC

Bold Bold

TABLE GP2 SUMMARY OF PFAS CONCENTRATIONS IN GROUNDWATER - ECOLOGY All results in $\mu g/L$ unless stated otherwise.

	PQL	NEMP 2018				SAMPLES			
	Envirolab	Interim 95%	MW102	MW107	MW114	MW121	MW126	WDUP101	WDUP102
	Services	Marine							
PFAS Compound	•							•	
Perfluorobutanesulfonic acid	0.0004	NSL	0.026	<0.0004	0.0099	0.017	0.0064	0.0066	0.017
Perfluoropentanesulfonic acid	0.001	NSL	0.027	<0.001	0.003	0.013	0.006	0.006	0.014
Perfluorohexanesulfonic acid - PFHxS	0.0002	NSL	0.14	<0.0002	0.0073	0.018	0.019	0.018	0.019
Perfluoroheptanesulfonic acid	0.001	NSL	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	0.0002	0.13	0.0031	<0.0002	0.038	0.002	0.011	0.011	0.002
Perfluorodecanesulfonic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorobutanoic acid	0.002	NSL	<0.02	<0.02	<0.02	<0.01	<0.002	<0.002	<0.004
Perfluoropentanoic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorohexanoic acid	0.0004	NSL	0.002	<0.0004	0.003	<0.0004	0.0051	0.0055	<0.0004
Perfluoroheptanoic acid	0.0004	NSL	<0.0004	<0.0004	<0.0004	<0.0004	0.0005	0.0005	<0.0004
Perfluorooctanoic acid PFOA	0.0002	220	0.0004	<0.0002	0.0008	0.0002	0.0006	0.0005	0.0002
Perfluorononanoic acid	0.001	NSL	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorodecanoic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	0.005	NSL	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	0.01	NSL	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorotetradecanoic acid	0.05	NSL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
4:2 FTS	0.001	NSL	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
6:2 FTS	0.0004	NSL	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
8:2 FTS	0.0004	NSL	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
10:2 FTS	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonamide	0.01	NSL	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
N-Methyl perfluorooctane sulfonamide	0.05	NSL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	0.05	NSL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	0.5	NSL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf-amid oacetic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf-amid oacetic acid	0.002	NSL	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Total Positive PFHxS & PFOS	0.0002	NSL	0.14	<0.0002	0.046	0.02	0.03	0.029	0.021
Total Positive PFOS & PFOA	0.0002	NSL	0.0035	<0.0002	0.039	0.002	0.012	0.011	0.0022
Total Positive PFAS	0.0002	NSL	0.2	<0.0002	0.064	0.05	0.049	0.048	0.052

Positive PFAS result PFAS result above the SAC Bold

Bold

TABLE QG2 SUMMARY OF PFAS FIELD QA/QC IN GROUNDWATER Units are µg/L unless stated otherwise. 0.0004 0.001 0.0002 0.001 0.0002 0.002 0.002 0.002 0.0004 0.0004 0.0002 0.001 0.002 0.5 0.002 0.002 0.0002 0.0002 0.0002 0.1 0.05 MW126 0.0064 0.006 0.019 < 0.001 0.011 < 0.002 < 0.002 < 0.002 0.0051 0.0005 0.0006 < 0.001 < 0.002 <0.002 <0.005 <0.01 <0.05 <0.001 <0.0004 <0.0004 <0.002 <0.01 <0.05 <0.1 <0.05</p> <0.5 <0.002 <0.002 0.03 0.012 0.049 aboratory WDUP101 0.0066 0.006 0.018 < 0.001 0.011 < 0.002 < 0.002 < 0.002 0.0055 0.0005 0.0005 < 0.001 < 0.002 <0.002 | <0.005 | <0.01 | <0.05 | <0.001 | <0.0004 | <0.0004 | <0.0004 | <0.002 | <0.01 | <0.05 | <0.1 | <0.05 | <0.5 | <0.002 | <0.002 | <0.002 | <0.002 | <0.011 | <0.048</p> uplicate MEAN 0.0065 0.006 0.0185 nc 0.011 nc nc nc 0.0053 0.0005 0.00055 nc 0.0295 0.0115 0.0485 RPD % 3% 0% 5% 8% 0% 18% MW121 0.017 0.013 0.018 <0.001 0.002 <0.002 <0.01 <0.002 <0.0004 <0.0004 0.0002 <0.001 <0.002 <0.002 <0.005 <0.01 <0.05 <0.001 <0.004 <0.0004 <0.0004 <0.002 <0.01 <0.05 <0.1 <0.05 <0.5 <0.05 <0.00 <0.002 <0.002 <0.002 <0.002 <0.005</p> WDUP102 0.017 < 0.002 < 0.0004 0.0002 < 0.001 < 0.002 <0.002</p>
<0.005</p>
<0.01</p>
<0.05</p>
<0.001</p>
<0.0004</p>
<0.0004</p>
<0.0002</p>
<0.01</p>
<0.05</p>
<0.1</p>
<0.05</p>
<0.5</p>
<0.002</p>
<0.002</p>
<0.002</p>
<0.002</p>
<0.002</p>
<0.05</p> 0.014 0.019 < 0.001 < 0.002 < 0.004 < 0.0004 laboratory 0.002 nc 0.0205 0.0021 0.051 MEAN 0.017 0.0135 0.0185 0.002 0.0002 luplicate nc RPD % 0% 7% 5% 0% 0% nc nc 5% 10% 4% NA NA NA NA < <0.01 <0.02 NA O.01 <0.01 <0.01 TB-W101 NA NA <0.01 NA <0.01 NA NA NA NA NA <0.01 NA NA NA 14/11/2023 Result outside of QA/QC acceptance criteria

Appendix D: Borehole Logs

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

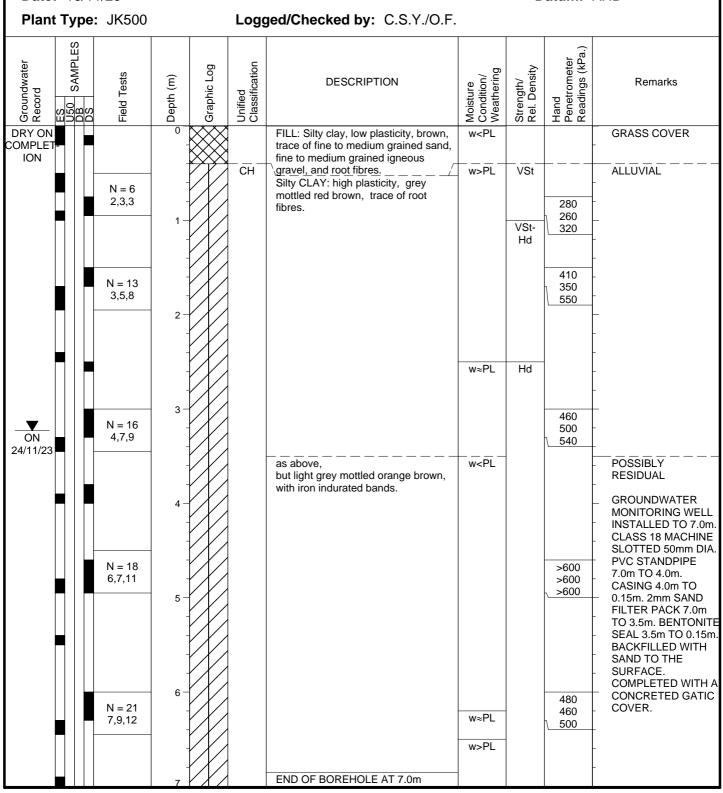
Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.36m

JOD NO.: ES	301462	IAIC	IIIOU: PUSH TUBE	R.L. Surface: 7.50III			
Date: 15/11/	23			Datum: AHD			
Plant Type:	EZIPROBE	Lo	gged/Checked by: A.D./B.P.				
Groundwater Record ES ASS ASS ASS PEAS DB	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION	0		FILL: Silty clay, low to medium plasticity, brown, trace of sand, igneous gravel, concrete fragments	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER
			and root fibres. as above, but grey.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-
	0.5		FILL: Silty clay, medium to high plasticity, grey, orange and red brown, trace of root fibres.	w <pl< td=""><td></td><td>-</td><td>REWORKED NATURAL</td></pl<>		-	REWORKED NATURAL
	1.5	CI-C	Silty CLAY: medium to high plasticity, grey mottled red, trace of root fibres.	w≈PL			ALLUVIAL
	2	-	END OF BOREHOLE AT 2.0m				-
	2.5 -	- - - -					- - - -
	3-	-					- - - -
	3.5						-

JKGeotechnics BOREHOLE LOG


Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 7.79m

Date: 16/11/23 **Datum:** AHD

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Client:

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 6.79m

Date: 16/11/23 Datum: AHD								
Plant Type: EZIPROBE	Logged/Checked by: A.D./B.P.							
Groundwater Record ES ASS ASS ASS DEAS DEAS DEAS Depth (m) Graphic Log	Unified Classification MOITPINDSED Classification	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)						
DRY ON COMPLE	ASPHALT: 50mm.t FILL: Gravelly sand, fine to medium	M ROADBASE						
TION 0.5-	grained, dark grey, fine to coarse grained, sub-angular igneous gravel, trace of asphalt fragments. FILL: Clayey sand, fine to medium grained, light brown and grey, trace of igneous and sandstone gravel.							
	FILL: Silty clay, medium to high CI-CH plasticity, brown and dark grey, trace of ash. Silty CLAY: medium to high plasticity, grey mottled red and orange.	w≈PL ALLUVIAL -						
1.5		-						
	END OF BOREHOLE AT 2.0m	-						
		-						
2.5 –		-						
3-		-						
3.5		-						

JKEnvironments ENVIRONMENTAL LOG

Log No. BH104 1/1 SDUP101: 1.7-2.0

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

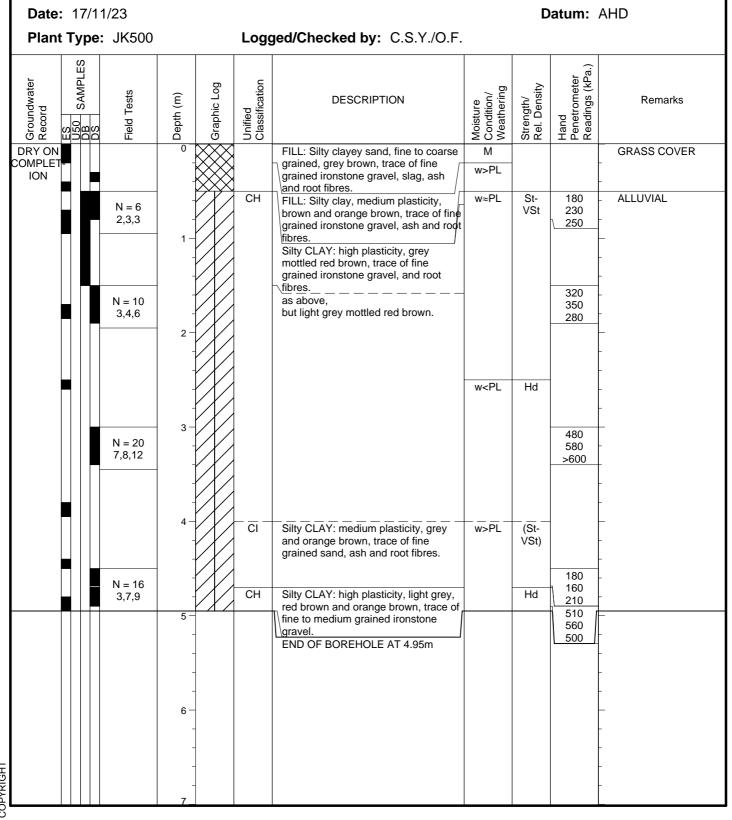
Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.04m

Date: 15/11/23		Datum: AHD							
Plant Type: EZIPRO	DBE Lo g	Logged/Checked by: A.D./B.P.							
Groundwater Record ES ASS ASS PESS DB Field Tests	Depth (m) Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE-TION	1.5 - CI-CH	FILL: Silty clay, medium plasticity, brown, trace of igneous gravel and root fibres. FILL: Silty clay, low to medium	w <pl td="" w<pl="" w<pl<=""><td></td><td></td><td>GRASS COVER ALLUVIAL </td></pl>			GRASS COVER ALLUVIAL			
	3.5					-			

JKGeotechnics BOREHOLE LOG



Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 7.59m

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

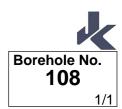
Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.38m

JOD NO.: E3				Method: PUSH TUBE				Datum: AHD			
Date: 16/11 Plant Type:)RE		Logo	ged/Checked by: A.D./B.P.		ט	atum:	АНО		
	LZIFIC			Loge	Jed/Cliecked by. A.D./B.F.						
Groundwater Record ES ASS ASS ASS ASS ASS ASS ASS ASS ASS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON		0			ASPHALT: 100mm.t	-			_		
COMPLE-TION		-		-	FILL: Silty clay, low to medium plasticity, brown, with fine to medium grained sand, trace of igneous gravel	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-		
		0.5			and asphalt fragments. FILL: Silty clay, medium to high plasticity, brown and orange brown.	w≈PL			REWORKED - NATURAL -		
		1 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red and orange.	w≈PL			- — ALLUVIAL - -		
		1.5 -							- - - -		
		2	VXA		END OF BOREHOLE AT 2.0m						
		2.5 —			END OF BOREHOLE AT 2.0III						
		- 3.5 _							- -		

JKGeotechnics BOREHOLE LOG

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT


Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 6.19m

Date: 16/11/23 **Datum:** AHD

					Datum: AHD							
Р	lant	Туре	: JK500		Logged/Checked by: C.S.Y./O.F.							
Groundwater	Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
				0 -			FILL: Silty clay, low plasticity, brown and red brown, trace of fine to medium grained ironstone gravel, and	w≈PL		380 410	GRASS COVER APPEARS	
			N = 6 2,2,4	- - 1 –		CH	root fibres. Silty CLAY: high plasticity, grey mottled orange brown, trace of fine grained ironstone gravel, ash and root fibres.	w>PL	VSt	250 280 260	POORLY COMPACTED ALLUVIAL	
	DN I 1/23 ▼		N = 11 2,5,6	- - 2 - -			as above, but light grey.			350 370 410	-	
COM	DN PLET ON		N = 7 3,3,4	3-						240 250 260	-	
				- 4 — -		CI-CH	Silty CLAY: medium to high plasticity, light grey, red brown and orange brown, trace of fine to medium grained ironstone gravel.			- - -	-	
			N = 10 6,4,6	- - 5 —			as above, but with ironstone bands.		Hd	540 480 \ 450	GROUNDWATER MONITORING WELL INSTALLED TO 6.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.0m TO 3.0m.	
			N = 24	- - 6 —						350 380 -	CASING 3.0m TO 0.1m. 2mm SAND FILTER PACK 6.0m TO 2.5m. BENTONITE SEAL 2.5m TO 0.1m. COMPLETED WITH A	
_			8,14,10	_			END OF BOREHOLE AT 6.45m			450	CONCRETED GATIC COVER.	
				- - 7_						_		

JKGeotechnics BOREHOLE LOG

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 7.00m

	10.: 3 : 16/1	35614BF2 1/23	<u>′</u>		wetn	od: SPIRAL AUGER	R.L. Surface: 7.00m Datum: AHD				
		: JK500			Logg	ged/Checked by: C.S.Y./O.F.		_			
Groundwater Record	ES U50 DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET ION		N = 9 3,4,5	- - -		CH	FILL: Silty clay, low plasticity, brown, with fine to medium grained sand. Silty CLAY: high plasticity, light grey mottled red brown, trace of fine to medium grained ironstone gravel, ash	 w≈PL		-	GRASS COVER ALLUVIAL	
			1 - - -			and root fibres.	w>PL	VSt	-		
		N = 11 3,4,7	- - 2 - -						360 320 350		
			3-			as above,	w≈PL	VSt-	370 350		
		N = 17 5,6,11	- - - - 4 -			but red brown mottled light grey and orange brown.		Hd	580 >600 480		
		N = 20 5,8,12				END OF BOREHOLE AT 4.95m			>600 >600 \>600		
			- - -						-		
			6						-		
			- 7_						-		

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.55m

] 3001	NO.: E3	35614P2	_		Metri	oa: PUSH TUBE		K	.L. Suri	ace: 7.55m
Date:	: 15/11	/23					Datum: AHD			
Plant	Type:	EZIPR	OBE		Logg	ged/Checked by: A.D./B.P.				
Groundwater Record	ASS ASB ASB PFAS DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-			0		·	FILL: Silty clay, low to medium plasticity, brown, trace of sand and	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER
TION			-			root fibres. FILL: Silty clay, low to medium plasticity, grey and brown, trace of igneous gravel and root fibres.	w <pl< td=""><td></td><td></td><td>-</td></pl<>			-
			0.5 - - - -			FILL: Silty clay, medium to high plasticity, grey, red and orange brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>REWORKED - NATURAL -</td></pl<>			REWORKED - NATURAL -
			1 - - - -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red, trace of root fibres.	w≈PL			ALLUVIAL - -
			1.5 - - -							- - -
			-							-
				-		END OF BOREHOLE AT 2.0m				-
			-	-						- - -
			2.5 -	-						-
				-						-
			3 -	-						- -
			3.5 _							- -

JKEnvironments **ENVIRONMENTAL LOG**

Environmental logs are not to be used for geotechnical purposes

BANKSTOWN AIRPORT PTY LTD

Project: **AVIATION HANGAR PROJECT**

Client:

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2					Method: PUSH TUBE				R.L. Surface: 8.25m			
: 15/11	/23			Datum: AHD					AHD			
t Type:	EZIPR	OBE		Logg	ged/Checked by: A.D./B.P.							
ASS ASS SAMPLES PFAS DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
		0			FILL: Silty clay, low to medium plasticity, brown, trace of sand and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER			
		0.5 -			FILL: Silty clay, medium to high plasticity, brown, grey and orange brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>REWORKED - NATURAL -</td></pl<>			REWORKED - NATURAL -			
		1.5 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled orange, trace of sand and ironstone gravel.	w≈PL			ALLUVIAL			
		2.5 -			END OF BOREHOLE AT 2.0m				- - - - - - - -			
	t Type:	t Type: EZIPR	t Type: EZIPROBE State of the	t Type: EZIPROBE Symbol Manager (m) Hode (m) Ho	t Type: EZIPROBE Logg t Type: EZIPROBE Logg Sylvation CI-CH Logg Logg	t Type: EZIPROBE Logged/Checked by: A.D./B.P. Sund S	type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION State of sand and root fibres. FILL: Sitty clay, medium to high plasticity, brown, trace of sand and root fibres. FILL: Sitty clay, medium to high plasticity, brown, trace of sand and roots fibres. CI-CH Sitty CLAY: medium to high plasticity, grey mottled orange brown, trace of sand and ironstone gravel. END OF BOREHOLE AT 2.0m	t Type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION John Jan Jan Jan Jan Jan Jan Jan Jan Jan Ja	type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION Supply			

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Client:

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 6.63m

Jobi	No.: E3	5614P2	<u> </u>		Meth	od: PUSH TUBE	R.L. Surface: 6.63m				
Date	: 15/11/	/23						Datum: AHD			
Plant	t Type:	EZIPR	OBE		Logg	ged/Checked by: A.D./B.P.					
Groundwater Record	ASS ASS ASB PFAS DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLE- TION			0			FILL: Silty clay, low to medium plasticity, brown, trace of root fibres.	w≈PL			GRASS COVER	
			-			FILL: Silty clay, medium to high plasticity, brown and grey, trace of root fibres.	w≈PL			-	
			0.5 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red and orange, trace of root fibres.	w≈PL			ALLUVIAL	
			2			END OF BOREHOLE AT 2.0m				-	
			2.5 - - - 3 - - - -								

Environmental logs are not to be used for geotechnical purposes

3001 104. 0-0.

Client: BANKSTOWN AIRPORT PTY LTD


Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 6.90m

D 140 L	330 14F Z	-		Method: PUSH TUBE				R.L. Surface: 6.90m			
te: 15/11	/23						D	atum:	AHD		
ant Type:	EZIPRO	OBE		Logg	ged/Checked by: A.D./B.P.						
ES AASS AASB AASB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DN LE		- - -			FILL: Silty clay, low to medium plasticity, brown, trace of sand, ironstone gravel and root fibres.	w <pl< td=""><td></td><td></td><td>GRASS COVER</td></pl<>			GRASS COVER		
		0.5 -			FILL: Silty clay, medium to high plasticity, brown, grey and orange brown, trace of root fibres.	w <pl< td=""><td></td><td></td><td>REWORKED - NATURAL</td></pl<>			REWORKED - NATURAL		
		1		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red and orange.	w≈PL			ALLUVIAL		
		2.5 -			END OF BOREHOLE AT 2.0m						
	te: 15/11 ant Type:	te: 15/11/23 ant Type: EZIPRO SERVE SAMPLE SERVE SAMPLE	Ant Type: EZIPROBE Symbol Symbol	ant Type: EZIPROBE Sall Was Sall (E) the plant of the pl	te: 15/11/23 ant Type: EZIPROBE Logg Salva Salv	te: 15/11/23 ant Type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION Paging Description Paging Description DESCRIPTION Paging Descriptio	te: 15/11/23 Int Type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION DESCRI	te: 15/11/23 Int Type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION John Hard Common Part of the Co	te: 15/11/23 ant Type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION DESCRIP		

JKGeotechnics BOREHOLE LOG

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 7.59m

Date	: 16/1	1/23			Datum: AHD						
Plan	t Type	: JK500			Logo	ged/Checked by: C.S.Y./O.F.					
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET ION			0 .			FILL: Silty clay, low plasticity, brown, with fine grained sand, trace of fine to medium grained ironstone gravel, clay nodules and root fibres.	w <pl< th=""><th></th><th></th><th>GRASS COVER</th></pl<>			GRASS COVER	
		N = 13 4,5,8	1 -		СН	Silty CLAY: high plasticity, red brown mottled light grey and orange brown, trace of fine to medium grained ironstone gravel, ash and root fibres.	w≈PL	Hd	>600 >600 >600	ALLUVIAL	
		N = 10 3,4,6						St- VSt	270		
		3,4,6	2 -						370 350	-	
			3 -						250 250 260		
		N = 14 4,5,9				as above, but light grey mottled orange brown.		VSt-	360 280 520		
			4 -						400 500	-	
		N = 14 3,5,9	5 -			END OF BOREHOLE AT 4.95m			450 480 \ 490	-	
						END OF BOREHOLE AT 4.55III			- -		
			6 -						-	-	
									-		

DPYRIGHT

JKGeotechnics BOREHOLE LOG

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 8.38m

Date: 16/11/23 **Datum:** AHD

Date	: 16/11	1/23						D	atum: /	AHD
Plant	t Type:	JK500			Logo	ged/Checked by: C.S.Y./O.F.				
	ES U50 DB DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION		N = 9 5,5,4	0 - - -			FILL: Silty clay, low plasticity, brown, with fine grained sand, trace of fine to medium grained ironstone gravel, clay nodules and root fibres. FILL: Silty clay, high plasticity, red brown and orange brown, trace of fine to medium grained ironstone gravel,	w <pl< td=""><td></td><td>>600</td><td>GRASS COVER POSSIBLY NATURAL</td></pl<>		>600	GRASS COVER POSSIBLY NATURAL
		N = 7 2,2,5	1 - - - 2		СН	and ash. Silty CLAY: high plasticity, grey mottled orange brown and red brown, trace of fine to medium grained ironstone gravel, and root fibres.	w>PL	VSt- Hd	340 350 410	ALLUVIAL
ON 24/11/23		N = 16 4,6,10	3- - -			as above, but orange brown and light grey.		Hd VSt	340 360 420 420 440 520 350 360	HP TESTING ON REMOULDED SAMPLE GROUNDWATER MONITORING WELL INSTALLED TO 7.0m.
		N = 13 3,6,7	4 — - - - 5 —		— <u>c</u> ı —	Silty CLAY: medium plasticity, light grey mottled orange brown.		VSt- Hd	280 320 300 280	CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 7.0m TO 4.0m. CASING 4.0m TO 0.5m. 2mm SAND FILTER PACK 7.0m TO 3.5m. BENTONITE SEAL 3.5m TO 2.6m. BACKFILLED WITH SAND TO THE SURFACE.
		N = 18 6,7,11	6 — -						380 380 420	COMPLETED WITH A CONCRETED GATIC COVER.
			7			END OF BOREHOLE AT 7.0m				

THOIGHT

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.14m

Date: 16/11/23				D	atum:	AHD
Plant Type: EZIPROBE	Logg	ged/Checked by: A.D./B.P.				
Groundwater Record ES ASS ASS PEAS DB Field Tests Craphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON 0		ASPHALT: 80mm.t				
COMPLE-TION	-	FILL: Gravelly sand, fine to medium grained, dark grey, fine to coarse grained, sub-angular igneous gravel.	M			ROADBASE
0.5		FILL: Clayey sand, fine to medium grained, light brown and grey, trace of sandstone gravel.	M			_
	01.011					_
	CI-CH	Silty CLAY: medium to high plasticity, grey mottled red, trace of root fibres.	w≈PL			ALLUVIAL - -
						-
1.5						
						-
		END OF BOREHOLE AT 2.0m				
						-
2.5 —						_
						_
3-						- - -
						-
3.5						_

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.74m

Date: 16/11/23	Datum: AHD					
Plant Type: EZIPROBE	Logged/Checked by: A.D./B.P.					
Groundwater Record ES ASS ASS ASS DB Field Tests Depth (m)	Graphic Log Unified Classification NOITHIN	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)				
DRY ON COMPLE-	ASPHALT: 60mm.t - FILL: Gravelly sand, fine to medium	M - ROADBASE				
TION	grained, dark grey, fine to coarse grained, sub-angular igneous gravel, trace of asphalt fragments. FILL: Clayey sand, fine to medium grained, light brown, red brown and grey, trace of sandstone gravel.					
	CI-CH Silty CLAY: medium to high plasticity, grey motted red and brown.	w≈PL ALLUVIAL				
1.5		- - - - - -				
		-				
	END OF BOREHOLE AT 2.0m	-				
2.5 –		- - - -				
3-		- - - -				
3.5		-				

DPYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.44m

Plant Type: EZIPROBE Logged/Checked by: A.D./B.P. DESCRIPTION Page 1	JOD NO.: E35614P2	Method: PUSH TUBE	R.L. Surface: 8.44m			
DESCRIPTION DESCR	Date: 16/11/23	Datum: AHD				
DRYON ON TION OBJECT	Plant Type: EZIPROBE	Logged/Checked by: A.D./B.P.				
ASPHALT: 60mm. O ASPHALT: 60mm. TION FILL: Gravelly sand, fine to medium grained, dark grey, fine to coarse gravel, Fill.: Clayey sand, fine to medium grained, sub-angular igneous gravel, M Fill.: Clayey sand, fine to medium grained, light brown and grey, trace of sandstone gravel. CI-CH Sitty CLAY: medium to high plasticity, grey mottled red. 1.5 END OF BOREHOLE AT 2.0m	Groundwater Record ES ASB PFAS DB FIeld Tests Cranhic Log	Unified Classification DESCRIPTION NOITPINDESE	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.) sysys			
grained, dark grey, fine to coarse grained, sub-angular igneous gravel. FILL: Clayey sand, fine to medium grained, sub-angular igneous gravel. FILL: Clayey sand, fine to medium grained, sub-angular igneous gravel. FILL: Clayey sand, fine to medium grained, sub-angular igneous gravel. CI-CH Silty CLAY: medium to high plasticity, grey mottled red. ALLUVIAL END OF BOREHOLE AT 2.0m	$DRYON \sqcup \; \sqcup $	ASPHALT: 60mm.t				
grey mottled red. 1.5 END OF BOREHOLE AT 2.0m	TION	grained, dark grey, fine to coarse \[\text{grained, sub-angular igneous gravel./} \] FILL: Clayey sand, fine to medium grained, light brown and grey, trace of	M			
			w≈PL ALLUVIAL			
		END OF BOREHOLE AT 2.0m				

PYRIGHT

SDUP113: 1.9-2.0

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.46m

Date: 1	7/11/	23						D	atum:	AHD
Plant Ty	ype:	EZIPRO	OBE		Logg	ged/Checked by: A.D./B.P.				
Groundy Record ES ASS	ASB SAMPLES PFAS DB	Field Tests	Oepth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-			-		-	ASPHALT: 60mm.t FILL: Gravelly sand, fine to medium	M			- ROADBASE
TION			- - 0.5 –			grained, dark grey, fine to coarse grained, sub-angular igneous gravel, trace of clay fines. FILL: Clayey sand, fine to medium grained, light brown and grey, trace of igneous and sandstone gravel.	M			-
			1		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red, trace of root fibres.	w≈PL			ALLUVIAL
			2	/ / /		END OF BOREHOLE AT 2.0m				
			2.5 - - - - - - 3 - - - - - - -							- - - - - - -

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 7.89m

Date	: 17/11	/23						D	atum:	AHD
Plan	t Type:	EZIPR	OBE		Logo	ged/Checked by: A.D./B.P.				
Groundwater Record	ES ASS ASB ASB SAMPLES DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON	ı		0			ASPHALT: 70mm.t FILL: Gravelly sand, fine to medium	M			ROADBASE
TION			0.5 -		-	grained, dark grey, fine to medium grained, dark grey, fine to coarse grained, sub-angular igneous gravel. FILL: Clayey sand, fine to medium grained, light brown and grey, trace of sandstone and igneous gravel.	M			
			1.5 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red and orange.	w≈PL			ALLUVIAL
			2.5 -			END OF BOREHOLE AT 2.0m				

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.55m

Job	No.: E3	35614P2	2		Meth	od: PUSH TUBE		R	.L. Surf	face: 8.55m
Date	e: 16-17	/11/23						D	atum:	AHD
Plar	nt Type:	EZIPR	OBE		Logg	ged/Checked by: A.D./B.P.				
Groundwater Record	ES ASS ASB PFAS DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY O	N		0			ASPHALT: 100mm.t				
TION			0.5 –		-	FILL: Gravelly sand, fine to medium grained, dark grey, fine to coarse grained, sub-angular igneous gravel, trace of asphalt fragments. FILL: Clayey sand, fine to medium grained, brown and orange brown, trace of sandstone gravel.	M			ROADBASE
			1.5 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red and orange, trace of root fibres. END OF BOREHOLE AT 2.1m	w≈PL			ALLUVIAL
			2.5 - - - - - - 3 - - - - -			END OF BONEFIOLE AT Z.IIII				

PYRIGHT

JKGeotechnics BOREHOLE LOG

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 8.37m

Date: 17/11/23 **Datum:** AHD

Date	: 17/1	1/23						D	atum: /	AHD
Plant	туре	: JK500			Logg	ged/Checked by: C.S.Y./O.F.				
Groundwater Record	ES U50 DB DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0 -			FILL: Silty clayey sand, fine to coarse grained, brown, trace of fine grained ironstone gravel, slag and root fibres. FILL: Silty clay, low to medium	M w>PL		-	GRASS COVER
		N = 6 3,3,3	- - 1 – -		CI-CH	plasticity, grey and orange brown, trace of fine grained ironstone gravel ash and root fibres. Silty CLAY: medium to high plasticity, grey mottled orange brown, trace of ash and root fibres.	w>PL	VSt- Hd	400 400 \ 420	ALLUVIAL
		N = 10 4,4,6	2 - - -						250 320 \ 400	-
		N = 19 6,8,11	3 - - -			Silty CLAY: medium to high plasticity, light grey mottled red brown and orange brown, trace of fine to medium grained ironstone gravel.	w≈PL		400 580 \ 500	-
ON 24/11/23 V ON COMPLET ION		N = 9 3,4,5	4 - - - - 5		CL	Silty CLAY: low plasticity, light grey mottled orange brown, with fine to medium grained sand.	w>PL	St	180 200 170	GROUNDWATER MONITORING WELL INSTALLED TO 7.0m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 7.0m TO 4.0m. CASING 4.0m TO 0.15m. 2mm SAND
		N = 11 3,5,6	6-			END OF BOREHOLE AT 7.0m		Vst	250 200 300	FILTER PACK 7.0m TO 3.5m. BENTONITE SEAL 3.5m TO 2.0m. BACKFILLED WITH SAND AND CUTTINGS TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.17m

JOD NO.:	E33014	PZ		Men	ioa: PUSH TUBE		K	.L. Suri	ace: 8.17m
Date: 17/	11/23			Datum: AHD					AHD
Plant Typ	e: EZIP	ROBE		Logg	ged/Checked by: L.R./B.P.				
Groundwater Record ES ASS SAMPLES	— jö .	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE-TION		0		-	ASPHALTIC CONCRETE: 10mm.t / FILL: Gravelly sand, fine to medium grained, dark grey, fine to coarse grained, sub-angular igneous gravel, trace of asphalt fragments. as above, but grey.	D D			ROADBASE
		1.5 -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red brown.	w≈PL			ALLUVIAL
		2.5 -			END OF BOREHOLE AT 2.0m				

PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.63m

J	ob No).: E3	35614P2	-		Meth	od: PUSH TUBE		R	.L. Sur	face: 8.63m
	ate:	17/11	/23							atum:	AHD
P	lant	Гуре:	EZIPR	OBE		Logg	ged/Checked by: A.D./B.P.				
Groundwater	Record	ASS ASB PFAS DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DR'	Y ON			0			ASPHALT: 80mm.t				
TI	MPLE-ON			0.5		CI-CH	FILL: Gravelly sand, fine to medium grained, dark grey, fine to coarse grained, sub-angular igneous gravel, trace of asphalt fragments. FILL: Clayey sand, fine to medium grained, light brown and grey, trace of sandstone gravel. Silty CLAY: medium to high plasticity, grey mottled red brown, trace of root fibres.	M M w≈PL			- ALLUVIAL
				2			END OF BOREHOLE AT 2.0m				
				2.5 - - - - - - 3 - - - - -							

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.51m

Date: 17/11/23		Datum: AHD			
Plant Type: EZIPROBE	Logged/Checked by: A.D./B.P.				
Groundwater Record ES ASS ASS PFAS DB Field Tests Graphic Log	Unified Classification DESCRIPTION OITHINGS	Moisture Condition/ Weathering Strength/ Rel. Density Hand Penetrometer Readings (kPa.)			
DRY ON COMPLE-	ASPHALT: 50mm.t FILL: Gravelly sand, fine to medium	M - ROADBASE			
TION 0.5	grained, dark grey, fine to coarse grained, sub-angular igneous gravel. FILL: Clayey sand, fine to medium grained, light brown and grey, trace of sandstone and igneous gravel.				
	CI-CH Silty CLAY: medium to high plasticity, grey mottled orange, trace of root fibres.	w≈PL ALLUVIAL			
1.5		-			
	END OF BOREHOLE AT 2.0m	-			
2.5 -					
3-		-			
3.5		-			

)PYRIGHT

Environmental logs are not to be used for geotechnical purposes

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: E35614P2 Method: PUSH TUBE R.L. Surface: 8.95m

Date	: 17/11	/23			Datum: AHD					AHD
Plant	t Type:	EZIPR	OBE		Logg	ged/Checked by: A.D./B.P.				
Groundwater Record	ASS ASB SAMPLES PFAS DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE			0			ASPHALT: 120mm.t				-
TION			-		-	FILL: Gravelly sand, fine to medium grained, dark grey, fine to coarse grained, sub-angular igneous gravel.	М			ROADBASE
			0.5 -			FILL: Clayey sand, fine to medium grained, light brown and grey, trace of sandstone gravel.	М			-
			- - 1 - -		CI-CH	Silty CLAY: medium to high plasticity, grey mottled red and orange.	w≈PL			ALLUVIAL - - - -
			- 1.5 - - -							- - - -
			-							_
			- - -			END OF BOREHOLE AT 2.0m				-
			2.5 - -							-
			3-							- - -
			3.5	-						_

DPYRIGHT

JKGeotechnics BOREHOLE LOG

Client: BANKSTOWN AIRPORT PTY LTD

Project: AVIATION HANGAR PROJECT

Location: BANKSTOWN AIRPORT, BANKSTOWN, NSW

Job No.: 35614BF2 Method: SPIRAL AUGER R.L. Surface: 9.20m

		000140F2			INICLI	iod: SPIRAL AUGER		R.L. Surface: 9.2011						
Date	: 17/1	1/23								Datum: AHD				
Plan	t Type	: JK500		Logged/Checked by: C.S.Y./O.F.										
Groundwater Record	USO SAMPLES DB SAMPLES Field Tests		Depth (m)	Depth (m) Graphic Log Unified Classification		DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
			0			FILL: Silty sand, fine to coarse	М			GRASS COVER				
			-			grained, brown, trace of fine to medium grained ironstone gravel, and root fibres.	w>PL		-	REWORKED NATURAL				
		N = 8 3,3,5	- 1 –		CI	FILL: Silty clay, low plasticity, grey brown, trace of fine to medium grained ironstone gravel. Silty CLAY: medium plasticity, grey mottled red brown, trace of fine	w>PL	Hd	460 450 500	ALLUVIAL -				
			-			grained ironstone gravel, ash and root fibres.								
		N = 12 4,5,7	-			as above, but light grey mottled orange brown.			320 440 _500					
			2						, 420					
			3 –						430 450	RESIDUAL				
		N = 18 5,6,12	-						480 500 500					
			- - 4 –						- - -	-				
		N = 21 5,8,13	-						470 >600 >600	GROUNDWATER MONITORING WELL INSTALLED TO 7.0m.				
ON 24/11/23	3		5 -							CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 7.0m TO 4.0m.				
ON COMPLETION	■		- - 6 –		CL	Silty CLAY: low plasticity, light grey mottled orange brown, with fine to medium grained sand.	w>PL	St- VSt		CASING 4.0m TO 0.15m. 2mm SAND FILTER PACK 7.0m TO 3.5m. BENTONITE SEAL 3.5m TO 2.0m.				
Y		N = 11 5,4,7	ь — - -						180 230 250	BACKFILLED WITH SAND AND CUTTINGS TO THE SURFACE.				
			- - 7			END OF BOREHOLE AT 7.0m			-	COMPLETED WITH A CONCRETED GATIC COVER.				

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties—soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)		
Very Soft (VS)	≤ 25	≤ 12		
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25		
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50		
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100		
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200		
Hard (Hd)	> 400	> 200		
Friable (Fr)	Strength not attainable – soil crumbles			

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

1

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.



SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77 QUARTZITE PEAT AND HIGHLY ORGANIC SOILS (Pt)

OTHER MATERIALS

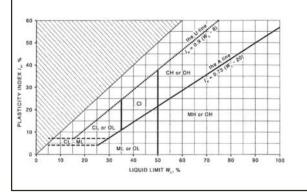
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
rsizefract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% fines	Fails to comply with above
uding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
ofsail exc	GC Gra		Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
rethan 65%c greater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 6 1 < C _c < 3
ioi (more	of coarse SP is smaller than		Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
graineds	than half of coarse fraction is larger than 2.36mm SAND (more than half of coarse fraction is larger than 1.36mm) SAND (more than half of coarse fraction is smaller than 2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coars	SC		Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

	Group				Laboratory Classification		
Majo	or Divisions	Group Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
Supr	SILT and CLAY (low to medium plasticity) CL, CI		Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
ainedsoils (more than 35% of soil excl oversize fraction is less than 0.075mm)			sticity) CL, CI Inorganic clay of low to medium plasticity, gravell clay, sandy clay		None to slow	Medium	Above A line
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line
orethic on is le	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
soils (m e fracti	(high plasticity)		Inorganic clay of high plasticity	High to very high	None	High	Above A line
iregainedsoils (morethan 35% of soil e oversize fraction is less than 0,075m		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition					
Groundwater Record		Standing water level	. Time delay following compl	etion of drilling/excavation may be show	n.		
	 _		Extent of borehole/test pit collapse shortly after drilling/excavation.				
	•	Groundwater seepa	ge into borehole or test pit n	oted during drilling or excavation.			
Samples	ES	•	epth indicated, for environm				
	U50		diameter tube sample taken				
	DB		le taken over depth indicate				
	DS	_	sample taken over depth ind				
	ASB	•	er depth indicated, for asbes				
	ASS	· ·	er depth indicated, for acid s				
	SAL	•	er depth indicated, for salinit				
	PFAS	Soil sample taken ov	er depth indicated, for analy	sis of Per- and Polyfluoroalkyl Substances	S.		
Field Tests	N = 17 4, 7, 10	figures show blows p		tween depths indicated by lines. Indivi isal' refers to apparent hammer refusal w			
	N _c = 5 7 3R	figures show blows p	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25	Vane shear reading i	Vane shear reading in kPa of undrained shear strength.				
	PID = 100	_	ector reading in ppm (soil san				
Moisture Condition	w > PL	Moisture content es	Moisture content estimated to be greater than plastic limit.				
(Fine Grained Soils)	w≈ PL	Moisture content estimated to be approximately equal to plastic limit.					
	w < PL	Moisture content estimated to be less than plastic limit.					
	w≈LL	Moisture content estimated to be near liquid limit.					
	w > LL	Moisture content estimated to be wet of liquid limit.					
(Coarse Grained Soils)	D	DRY – runs free	DRY – runs freely through fingers.				
	M		· · · · · · · · · · · · · · · · · · ·				
	W	WET – free water visible on soil surface.					
Strength (Consistency)	VS	VERY SOFT – un	confined compressive streng	gth ≤ 25kPa.			
Cohesive Soils	S	SOFT – un	confined compressive streng	gth > 25kPa and ≤ 50kPa.			
	F	FIRM – un	confined compressive streng	gth > 50kPa and ≤ 100kPa.			
	St	STIFF – un	confined compressive streng	gth > 100kPa and ≤ 200kPa.			
	VSt	VERY STIFF – un	confined compressive streng	gth > 200kPa and ≤ 400kPa.			
	Hd	HARD – un	· -				
	Fr	FRIABLE – str	ength not attainable, soil cru	imbles.			
	()	Bracketed symbol is assessment.	ndicates estimated consiste	ncy based on tactile examination or o	other		
Density Index/ Relative Density			Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE	≤ 15	0-4			
	L	LOOSE	> 15 and ≤ 35	4-10			
	MD	MEDIUM DENSE	> 35 and ≤ 65	10 – 30			
	D	DENSE	> 65 and ≤ 85	30 – 50			
	VD	VERY DENSE	> 85	>50			
	()	Bracketed symbol in	dicates estimated density ba	sed on ease of drilling or other assessme	ent.		

Log Column	Symbol	Definition	Definition			
Hand Penetrometer Readings	300 250		Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.			
Remarks	'V' bit	Hardened steel	'V' shaped bit.			
	'TC' bit	Twin pronged to	ungsten carbide bit.			
	T ₆₀	Penetration of a without rotation	nuger string in mm under static load of rig applied by drill head hydraulics n of augers.			
	Soil Origin	The geological o	rigin of the soil can generally be described as:			
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 			
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 			
		ALLUVIAL	– soil deposited by creeks and rivers.			
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 			
		MARINE	 soil deposited in a marine environment. 			
		AEOLIAN	 soil carried and deposited by wind. 			
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 			
		LITTORAL	– beach deposited soil.			

Classification of Material Weathering

Term	Term		viation	Definition
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	HW Distinctly Weathered		DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(Note 1)	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength		
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment	
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.	
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	
Medium Strength	M	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.	
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.	
Extremely High Strength	EH	> 200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	

Appendix E: Laboratory Reports & COC Documents

Soil

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 338230

Client Details	
Client	JK Environments
Attention	Brendan Page
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35614P2, Bankstown
Number of Samples	256 Soil, 1 Water
Date samples received	20/11/2023
Date completed instructions received	20/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	29/11/2023
Date of Issue	29/11/2023
NATA Accreditation Number 2901.	his document shall not be reproduced except in full.
Accredited for compliance with ISO/	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean, Stuart

Chen, Lucy Zhu

Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist
Hannah Nguyen, Metals Supervisor
Loren Bardwell, Development Chemist
Lucy Zhu, Asbestos Supervisor
Phalak Inthakesone, Organics Development Manager, Sydney
Sean McAlary, Chemist
Steven Luong, Senior Chemist
Tim Toll, Chemist (FAS)

Authorised By

Nancy Zhang, Laboratory Manager

PFAS in Soils Short						
Our Reference		338230-99	338230-101	338230-102	338230-104	338230-106
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1	1.3-1.5	0-0.2	0.9-1
Date Sampled		15.11.2023	15.11.2023	15.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	29	0.9	<0.1	0.2	0.2
Perfluorooctanesulfonic acid PFOS	μg/kg	82	0.5	<0.1	5.4	0.1
Perfluorooctanoic acid PFOA	μg/kg	2.0	<0.1	<0.1	0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	97	97	94	94	93
Surrogate ¹³ C ₂ PFOA	%	102	97	96	98	95
Extracted ISTD 18 O2 PFHxS	%	98	80	94	89	80
Extracted ISTD 13 C4 PFOS	%	85	81	101	94	81
Extracted ISTD 13 C4 PFOA	%	115	82	95	96	78
Extracted ISTD 13 C ₂ 6:2FTS	%	120	110	99	126	86
Extracted ISTD ¹³ C ₂ 8:2FTS	%	122	115	96	126	83
Total Positive PFHxS & PFOS	μg/kg	110	1.4	<0.1	5.6	0.3
Total Positive PFOS & PFOA	μg/kg	83	0.5	<0.1	5.5	0.1
Total Positive PFAS	μg/kg	110	1.4	<0.1	5.8	0.3

PFAS in Soils Short						
Our Reference		338230-107	338230-115	338230-116	338230-118	338230-120
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.2-0.4	0.7-1	0-0.1
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	15.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	0.1	0.2	0.9	0.7
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	<0.1	0.2	0.3	7.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	96	95	97	105	99
Surrogate ¹³ C ₂ PFOA	%	94	102	99	99	97
Extracted ISTD 18 O2 PFHxS	%	93	91	94	99	100
Extracted ISTD 13 C4 PFOS	%	97	95	99	98	101
Extracted ISTD 13 C4 PFOA	%	97	97	98	104	117
Extracted ISTD 13 C ₂ 6:2FTS	%	98	118	105	115	137
Extracted ISTD 13 C ₂ 8:2FTS	%	99	139	107	113	131
Total Positive PFHxS & PFOS	μg/kg	<0.1	0.1	0.4	1.1	7.8
Total Positive PFOS & PFOA	μg/kg	<0.1	<0.1	0.2	0.3	7.2
Total Positive PFAS	μg/kg	<0.1	0.1	0.4	1.1	7.9

PFAS in Soils Short						
Our Reference		338230-121	338230-123	338230-124	338230-125	338230-126
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15.11.2023	15.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.9	<0.1	0.2	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.3	<0.1	0.2	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	102	99	89	90	98
Surrogate ¹³ C ₂ PFOA	%	104	101	97	95	98
Extracted ISTD 18 O2 PFHxS	%	100	97	87	78	101
Extracted ISTD 13 C4 PFOS	%	117	111	92	83	111
Extracted ISTD 13 C4 PFOA	%	124	106	93	83	113
Extracted ISTD 13 C ₂ 6:2FTS	%	140	117	123	101	130
Extracted ISTD 13 C ₂ 8:2FTS	%	170	124	118	102	139
Total Positive PFHxS & PFOS	μg/kg	1.2	<0.1	0.4	<0.1	<0.1
Total Positive PFOS & PFOA	μg/kg	0.3	<0.1	0.2	<0.1	<0.1
Total Positive PFAS	μg/kg	1.2	<0.1	0.4	<0.1	<0.1

Envirolab Reference: 338230

Revision No: R00

PFAS in Soils Short						
Our Reference		338230-132	338230-133	338230-134	338230-136	338230-137
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.4	<0.1	<0.1	0.5	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	0.4	<0.1	0.9	0.2
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	89	95	101	99	97
Surrogate ¹³ C ₂ PFOA	%	100	104	99	101	99
Extracted ISTD 18 O2 PFHxS	%	95	85	99	96	94
Extracted ISTD 13 C4 PFOS	%	100	90	105	102	98
Extracted ISTD 13 C ₄ PFOA	%	99	87	104	106	102
Extracted ISTD 13 C ₂ 6:2FTS	%	139	100	103	109	109
Extracted ISTD ¹³ C ₂ 8:2FTS	%	133	92	118	138	116
Total Positive PFHxS & PFOS	μg/kg	0.4	0.4	<0.1	1.4	0.2
Total Positive PFOS & PFOA	μg/kg	<0.1	0.4	<0.1	0.9	0.2
Total Positive PFAS	μg/kg	0.4	0.4	<0.1	1.4	0.2

PFAS in Soils Short						
Our Reference		338230-139	338230-146	338230-148	338230-150	338230-154
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.8-0.9	1.9-2	0-0.15
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	15.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	0.4	<0.1	<0.1	0.5
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	0.3	<0.1	<0.1	5.5
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	0.4
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	95	91	93	94	82
Surrogate ¹³ C ₂ PFOA	%	103	100	94	95	95
Extracted ISTD 18 O2 PFHxS	%	78	92	84	90	90
Extracted ISTD 13 C4 PFOS	%	80	99	92	97	99
Extracted ISTD 13 C4 PFOA	%	77	97	91	96	97
Extracted ISTD 13 C ₂ 6:2FTS	%	83	145	104	103	117
Extracted ISTD 13 C ₂ 8:2FTS	%	78	133	107	103	97
Total Positive PFHxS & PFOS	μg/kg	<0.1	0.6	<0.1	<0.1	6.0
Total Positive PFOS & PFOA	μg/kg	<0.1	0.3	<0.1	<0.1	6.0
Total Positive PFAS	μg/kg	<0.1	0.6	<0.1	<0.1	6.4

PFAS in Soils Short						
Our Reference		338230-155	338230-157	338230-159	338230-160	338230-161
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.2-0.5	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15.11.2023	15.11.2023	15.11.2023	15.11.2023	15.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	3.1	<0.1	0.5	0.4	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.4	<0.1	5.5	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	97	99	100	101	100
Surrogate ¹³ C ₂ PFOA	%	98	98	99	99	96
Extracted ISTD 18 O2 PFHxS	%	96	98	102	97	99
Extracted ISTD 13 C4 PFOS	%	106	108	110	108	107
Extracted ISTD 13 C ₄ PFOA	%	108	106	122	105	105
Extracted ISTD 13 C ₂ 6:2FTS	%	106	114	139	93	112
Extracted ISTD ¹³ C ₂ 8:2FTS	%	95	107	135	112	107
Total Positive PFHxS & PFOS	μg/kg	3.5	<0.1	6.0	0.4	<0.1
Total Positive PFOS & PFOA	μg/kg	0.4	<0.1	5.6	<0.1	<0.1
Total Positive PFAS	μg/kg	3.5	<0.1	6.1	0.4	<0.1

Envirolab Reference: 338230

Page | 7 of 168 Revision No: R00

PFAS in Soils Short						
Our Reference		338230-163	338230-164	338230-166	338230-168	338230-169
Your Reference	UNITS	BH111	BH111	BH111	BH112	BH112
Depth		0-0.1	0.2-0.5	1.3-1.5	0-0.1	0.4-0.7
Date Sampled		15.11.2023	15.11.2023	15.11.2023	15.11.2023	15.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	2.8	49	0.4	1.8	0.5
Perfluorooctanesulfonic acid PFOS	μg/kg	21	44	<0.1	2.9	0.2
Perfluorooctanoic acid PFOA	μg/kg	0.2	1.2	<0.1	0.3	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	102	96	103	96	101
Surrogate ¹³ C ₂ PFOA	%	100	100	98	101	96
Extracted ISTD 18 O2 PFHxS	%	88	87	96	93	93
Extracted ISTD 13 C4 PFOS	%	94	101	98	104	100
Extracted ISTD 13 C ₄ PFOA	%	102	103	104	108	104
Extracted ISTD ¹³ C ₂ 6:2FTS	%	121	111	105	121	100
Extracted ISTD ¹³ C ₂ 8:2FTS	%	100	112	112	130	117
Total Positive PFHxS & PFOS	μg/kg	24	93	0.4	4.7	0.7
Total Positive PFOS & PFOA	μg/kg	21	45	<0.1	3.1	0.2
Total Positive PFAS	μg/kg	24	94	0.4	5.0	0.7

PFAS in Soils Short						
Our Reference		338230-170	338230-172	338230-173	338230-176	338230-180
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.9-2	0-0.1
Date Sampled		15.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	1.2	0.1	0.2	0.5
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	7.1	<0.1	0.2	8.5
Perfluorooctanoic acid PFOA	μg/kg	<0.1	0.3	<0.1	<0.1	0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	99	101	101	102	100
Surrogate ¹³ C ₂ PFOA	%	98	99	100	99	100
Extracted ISTD 18 O2 PFHxS	%	97	98	89	95	98
Extracted ISTD 13 C4 PFOS	%	100	109	97	105	108
Extracted ISTD 13 C4 PFOA	%	107	116	98	109	133
Extracted ISTD 13 C ₂ 6:2FTS	%	109	118	100	110	159
Extracted ISTD ¹³ C ₂ 8:2FTS	%	107	128	116	123	176
Total Positive PFHxS & PFOS	μg/kg	<0.1	8.3	0.1	0.4	9.0
Total Positive PFOS & PFOA	μg/kg	<0.1	7.4	<0.1	0.2	8.6
Total Positive PFAS	μg/kg	<0.1	8.6	0.1	0.4	9.1

PFAS in Soils Short						
Our Reference		338230-182	338230-184	338230-189	338230-190	338230-192
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.8-0.95	1.8-2	0.08-0.2	0.3-0.5	1.9-2
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	27/11/2023	24/11/2023	27/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	1.2	2.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	0.6	<0.1	0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	98	98	93	99	91
Surrogate ¹³ C ₂ PFOA	%	101	102	100	100	99
Extracted ISTD ¹⁸ O ₂ PFHxS	%	102	98	88	99	85
Extracted ISTD 13 C4 PFOS	%	109	111	99	110	94
Extracted ISTD ¹³ C ₄ PFOA	%	106	104	96	107	88
Extracted ISTD ¹³ C ₂ 6:2FTS	%	108	100	113	111	98
Extracted ISTD ¹³ C ₂ 8:2FTS	%	115	118	127	116	93
Total Positive PFHxS & PFOS	μg/kg	1.2	2.8	<0.1	0.1	<0.1
Total Positive PFOS & PFOA	μg/kg	<0.1	0.6	<0.1	0.1	<0.1
Total Positive PFAS	μg/kg	1.2	2.8	<0.1	0.1	<0.1

PFAS in Soils Short						
Our Reference		338230-193	338230-194	338230-195	338230-197	338230-198
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1	0.06-0.2	0.4-0.7
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	24/11/2023	27/11/2023	24/11/2023	27/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	0.2	0.9	<0.1	0.2
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	0.1	0.3	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	95	92	98	90	101
Surrogate ¹³ C ₂ PFOA	%	96	94	98	103	101
Extracted ISTD 18 O2 PFHxS	%	100	91	95	78	97
Extracted ISTD 13 C4 PFOS	%	120	98	103	87	109
Extracted ISTD 13 C ₄ PFOA	%	117	95	103	84	110
Extracted ISTD 13 C ₂ 6:2FTS	%	123	101	110	100	113
Extracted ISTD ¹³ C ₂ 8:2FTS	%	163	97	129	107	118
Total Positive PFHxS & PFOS	μg/kg	<0.1	0.4	1.1	<0.1	0.2
Total Positive PFOS & PFOA	μg/kg	<0.1	0.1	0.3	<0.1	<0.1
Total Positive PFAS	μg/kg	<0.1	0.4	1.1	<0.1	0.2

PFAS in Soils Short						
Our Reference		338230-199	338230-201	338230-202	338230-203	338230-205
Your Reference	UNITS	BH117	BH118	BH118	BH118	BH119
Depth		1.3-1.5	0.06-0.2	0.2-0.4	0.7-0.1	0.07-0.2
Date Sampled		16/11/2023	17.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	27/11/2023	24/11/2023	27/11/2023	27/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	1.9	<0.1	0.1	1.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.3	<0.1	<0.1	0.2	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	93	104	93	100	104
Surrogate ¹³ C ₂ PFOA	%	97	96	99	100	96
Extracted ISTD 18 O2 PFHxS	%	88	99	91	87	99
Extracted ISTD 13 C4 PFOS	%	94	114	99	98	114
Extracted ISTD 13 C ₄ PFOA	%	90	114	94	104	114
Extracted ISTD ¹³ C ₂ 6:2FTS	%	99	116	103	112	116
Extracted ISTD 13 C ₂ 8:2FTS	%	96	143	98	117	143
Total Positive PFHxS & PFOS	μg/kg	2.1	<0.1	0.1	1.3	<0.1
Total Positive PFOS & PFOA	μg/kg	0.3	<0.1	<0.1	0.2	<0.1
Total Positive PFAS	μg/kg	2.1	<0.1	0.1	1.3	<0.1

PFAS in Soils Short						
Our Reference		338230-206	338230-208	338230-209	338230-210	338230-211
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	1.9-2	0.1-0.2	0.2-0.5	0.7-1
Date Sampled		17.11.2023	17.11.2023	17/11/2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	<0.1	0.2	2.2	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	96	97	102	94	98
Surrogate ¹³ C ₂ PFOA	%	98	95	98	100	98
Extracted ISTD 18 O2 PFHxS	%	92	89	105	77	96
Extracted ISTD 13 C4 PFOS	%	96	94	117	77	111
Extracted ISTD 13 C4 PFOA	%	94	92	130	81	115
Extracted ISTD 13 C ₂ 6:2FTS	%	105	97	138	100	127
Extracted ISTD ¹³ C ₂ 8:2FTS	%	101	92	164	93	156
Total Positive PFHxS & PFOS	μg/kg	<0.1	<0.1	0.2	2.4	<0.1
Total Positive PFOS & PFOA	μg/kg	<0.1	<0.1	0.2	2.2	<0.1
Total Positive PFAS	μg/kg	<0.1	<0.1	0.2	2.4	<0.1

PFAS in Soils Short						
Our Reference		338230-213	338230-214	338230-216	338230-224	338230-225
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	1.7-1.95	0.01-0.16	0.2-0.35
Date Sampled		17.11.2023	17.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	27/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	1.9	33	0.2	0.9	1.1
Perfluorooctanesulfonic acid PFOS	μg/kg	44	1.9	<0.1	<0.1	0.2
Perfluorooctanoic acid PFOA	μg/kg	0.2	0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	99	102	90	92	89
Surrogate ¹³ C ₂ PFOA	%	103	100	93	97	94
Extracted ISTD 18 O2 PFHxS	%	98	96	74	90	85
Extracted ISTD 13 C4 PFOS	%	110	109	78	99	98
Extracted ISTD 13 C4 PFOA	%	118	106	76	95	91
Extracted ISTD 13 C ₂ 6:2FTS	%	137	108	81	109	100
Extracted ISTD ¹³ C ₂ 8:2FTS	%	146	135	71	111	94
Total Positive PFHxS & PFOS	μg/kg	46	35	0.2	0.9	1.4
Total Positive PFOS & PFOA	μg/kg	44	2.0	<0.1	<0.1	0.2
Total Positive PFAS	μg/kg	46	35	0.2	0.9	1.4

PFAS in Soils Short						
Our Reference		338230-226	338230-228	338230-229	338230-230	338230-231
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Depth		0.7-1	0.08-0.2	0.2-0.5	0.7-1	0.05-0.15
Date Sampled		17.11.2023	17.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	3.8	<0.1	1.2	5.8	0.2
Perfluorooctanesulfonic acid PFOS	μg/kg	1.1	<0.1	2.0	0.99	<0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	97	95	96	93	91
Surrogate ¹³ C ₂ PFOA	%	100	100	100	103	98
Extracted ISTD 18 O2 PFHxS	%	96	101	100	71	74
Extracted ISTD 13 C4 PFOS	%	106	117	117	73	76
Extracted ISTD 13 C4 PFOA	%	109	118	116	71	78
Extracted ISTD 13 C ₂ 6:2FTS	%	116	134	113	81	91
Extracted ISTD 13 C ₂ 8:2FTS	%	130	143	126	76	93
Total Positive PFHxS & PFOS	μg/kg	4.9	<0.1	3.1	6.8	0.2
Total Positive PFOS & PFOA	μg/kg	1.1	<0.1	2.0	1.1	<0.1
Total Positive PFAS	μg/kg	4.9	<0.1	3.1	7.0	0.2

PFAS in Soils Short						
Our Reference		338230-232	338230-234	338230-235	338230-236	338230-237
Your Reference	UNITS	BH124	BH124	BH125	BH125	BH125
Depth		0.2-0.5	1.9-2	0.12-0.3	0.35	0.7-1
Date Sampled		17.11.2023	17.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.3	<0.1	0.1	1.0	7.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.5	<0.1	<0.1	0.6	0.1
Perfluorooctanoic acid PFOA	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	81	84	90	82	91
Surrogate ¹³ C ₂ PFOA	%	99	102	97	101	106
Extracted ISTD 18 O2 PFHxS	%	79	80	89	86	70
Extracted ISTD 13 C4 PFOS	%	91	96	100	97	72
Extracted ISTD 13 C4 PFOA	%	80	85	96	88	68
Extracted ISTD ¹³ C ₂ 6:2FTS	%	92	93	142	99	79
Extracted ISTD ¹³ C ₂ 8:2FTS	%	87	86	156	92	71
Total Positive PFHxS & PFOS	μg/kg	0.8	<0.1	0.1	1.6	7.2
Total Positive PFOS & PFOA	μg/kg	0.5	<0.1	<0.1	0.6	0.1
Total Positive PFAS	μg/kg	0.8	<0.1	0.1	1.6	7.2

PFAS in Soils Short						
Our Reference		338230-239	338230-240	338230-241	338230-251	338230-252
Your Reference	UNITS	BH126	BH126	BH126	SDUP105	SDUP106
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17.11.2023	17.11.2023	17.11.2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	7.1	32	11	2.7	2.2
Perfluorooctanesulfonic acid PFOS	μg/kg	190	14	2.3	20	0.7
Perfluorooctanoic acid PFOA	μg/kg	0.7	0.5	0.1	0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	88	97	103	102	101
Surrogate ¹³ C ₂ PFOA	%	103	96	97	101	100
Extracted ISTD 18 O2 PFHxS	%	79	92	94	90	97
Extracted ISTD 13 C4 PFOS	%	96	97	101	74	102
Extracted ISTD 13 C4 PFOA	%	79	101	108	77	105
Extracted ISTD 13 C ₂ 6:2FTS	%	104	104	124	70	111
Extracted ISTD 13 C ₂ 8:2FTS	%	98	110	119	37	117
Total Positive PFHxS & PFOS	μg/kg	200	46	13	23	2.9
Total Positive PFOS & PFOA	μg/kg	190	14	2.4	20	0.7
Total Positive PFAS	μg/kg	200	46	13	23	2.9

PFAS in Soils Short				
Our Reference		338230-253	338230-255	338230-257
Your Reference	UNITS	SDUP107	SDUP112	TB-S101
Depth		-	-	-
Date Sampled		16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	24/11/2023	24/11/2023	24/11/2023
Date analysed	-	27/11/2023	24/11/2023	27/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.3	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	μg/kg	0.3	<0.1	<0.1
Perfluorooctanoic acid PFOA	μg/kg	0.1	<0.1	<0.1
6:2 FTS	μg/kg	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	100	100	98
Surrogate ¹³ C ₂ PFOA	%	99	100	100
Extracted ISTD 18 O2 PFHxS	%	100	98	104
Extracted ISTD 13 C4 PFOS	%	110	103	119
Extracted ISTD 13 C4 PFOA	%	125	109	122
Extracted ISTD 13 C ₂ 6:2FTS	%	140	121	126
Extracted ISTD ¹³ C ₂ 8:2FTS	%	174	141	150
Total Positive PFHxS & PFOS	μg/kg	0.6	<0.1	<0.1
Total Positive PFOS & PFOA	μg/kg	0.4	<0.1	<0.1
Total Positive PFAS	μg/kg	0.7	<0.1	<0.1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-1	338230-3	338230-4	338230-5	338230-6
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1.0	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	113	115	101	114	97

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-8	338230-9	338230-11	338230-12	338230-13
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.4-0.6	0.7-1.0	0-0.1
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	107	95	90	82	91

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-14	338230-16	338230-17	338230-18	338230-19
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2.0	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15/11/2023	15/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	104	94	85	95

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-20	338230-21	338230-22	338230-23	338230-24
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	108	107	106	105	102

Envirolab Reference: 338230

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-26	338230-27	338230-28	338230-29	338230-31
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.5-0.7	0.8-1.0	0-0.15
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	105	103	104	102

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-33	338230-34	338230-35	338230-36	338230-37
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.5-0.8	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	107	106	115	104

Envirolab Reference: 338230

Page | **21 of 168** Revision No: R00

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-38	338230-39	338230-40	338230-42	338230-43
Your Reference	UNITS	BH111	BH111	BH111	BH112	BH112
Depth		0-0.1	0.2-0.5	0.5-0.7	0-0.1	0.4-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	104	103	103	102	104

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-44	338230-45	338230-46	338230-48	338230-49
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.5-1.7	0-0.1
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	103	97	99	107

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-50	338230-53	338230-54	338230-55	338230-56
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.3-0.5	1.8-2.0	0.08-0.2	0.3-0.5	0.8-1.0
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	104	108	107	103

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-57	338230-58	338230-59	338230-60	338230-61
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1.0	0.06-0.2	0.4-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	104	107	106	85

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-62	338230-63	338230-64	338230-65	338230-66
Your Reference	UNITS	BH117	BH118	BH118	BH118	BH119
Depth		1.3-1.5	0.06-0.2	0.2-0.4	0.7-1.0	0.07-0.2
Date Sampled		16/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	93	92	91	92	88

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-67	338230-68	338230-69	338230-70	338230-71
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	0.7-1.0	0.1-0.2	0.2-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	95	97	92	91

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-72	338230-73	338230-74	338230-75	338230-76
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	0.7-0.95	0.01-0.16	0.2-0.35
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	122	93	93	93	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-77	338230-78	338230-79	338230-80	338230-81
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Depth		0.7-1.0	0.08-0.2	0.2-0.5	0.7-1.0	0.05-0.15
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	95	86	91	93

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-82	338230-83	338230-84	338230-85	338230-86
Your Reference	UNITS	BH124	BH124	BH125	BH125	BH125
Depth		0.2-0.5	0.6-1.0	0.12-0.3	0.3-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	93	91	94	90	92

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-87	338230-88	338230-89	338230-90	338230-91
Your Reference	UNITS	BH126	BH126	BH126	SDUP107	SDUP108
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	92	95	92	94

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		338230-92	338230-93	338230-94	338230-95	338230-96
Your Reference	UNITS	SDUP109	SDUP110	SDUP111	SDUP112	TB-S101
Depth		-	-	-	-	-
Date Sampled		17/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	92	93	94	92

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		338230-97
Your Reference	UNITS	TS-S101
Depth		-
Date Sampled		15/11/2023
Type of sample		Soil
Date extracted	-	22/11/2023
Date analysed	-	24/11/2023
Benzene	mg/kg	97%
Toluene	mg/kg	98%
Ethylbenzene	mg/kg	95%
m+p-xylene	mg/kg	95%
o-Xylene	mg/kg	93%
Surrogate aaa-Trifluorotoluene	%	95

svTRH (C10-C40) in Soil						
Our Reference		338230-1	338230-3	338230-4	338230-5	338230-6
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1.0	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	120	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	120	<50	<50	<50	<50
Surrogate o-Terphenyl	%	93	83	76	85	81
svTRH (C10-C40) in Soil						
Our Reference		338230-8	338230-9	338230-11	338230-12	338230-13
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.4-0.6	0.7-1.0	0-0.1
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50

<100

<100

<50

<50

<50

<100

<100

<50

82

<100

<100

<50

<50

<50

<100

170

170

80

<100

<100

<50

<50

<50

<100

<100

<50

83

<100

<100

<50

<50

<50

<100

<100

<50

81

<100

<100

<50

<50

<50

<100

<100

<50

85

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

Envirolab Reference: 338230 Revision No: R00

TRH C₁₅ - C₂₈

TRH C₂₉ - C₃₆

TRH >C₁₀ -C₁₆

TRH >C₁₆ -C₃₄

TRH >C₃₄ -C₄₀

Total +ve TRH (C10-C36)

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

TRH >C₁₀ - C₁₆ less Naphthalene (F2)

svTRH (C10-C40) in Soil						
Our Reference		338230-14	338230-16	338230-17	338230-18	338230-19
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2.0	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15/11/2023	15/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	81	81	81	80	82

svTRH (C10-C40) in Soil						
Our Reference		338230-20	338230-21	338230-22	338230-23	338230-24
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	180	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	180	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	180	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	240	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	420	<50	<50	<50	<50
Surrogate o-Terphenyl	%	81	79	79	82	79

svTRH (C10-C40) in Soil						
Our Reference		338230-26	338230-27	338230-28	338230-29	338230-31
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.5-0.7	0.8-1.0	0-0.15
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	22/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	110
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	110
Surrogate o-Terphenyl	%	80	81	80	80	82

svTRH (C10-C40) in Soil						
Our Reference		338230-33	338230-34	338230-35	338230-36	338230-37
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.5-0.8	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	22/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	150	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	150	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	180	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	130	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	310	<50	<50
Surrogate o-Terphenyl	%	80	80	80	80	78

svTRH (C10-C40) in Soil						
Our Reference		338230-38	338230-39	338230-40	338230-42	338230-43
Your Reference	UNITS	BH111	BH111	BH111	BH112	BH112
Depth		0-0.1	0.2-0.5	0.5-0.7	0-0.1	0.4-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	23/11/2023	23/11/2023	22/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	140	<100	<100	120	<100
Total +ve TRH (C10-C36)	mg/kg	140	<50	<50	120	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	170	<100	<100	140	<100
TRH >C ₃₄ -C ₄₀	mg/kg	130	<100	<100	110	<100
Total +ve TRH (>C10-C40)	mg/kg	300	<50	<50	250	<50
Surrogate o-Terphenyl	%	81	80	79	80	80

svTRH (C10-C40) in Soil						
Our Reference		338230-44	338230-45	338230-46	338230-48	338230-49
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.5-1.7	0-0.1
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	22/11/2023	23/11/2023	23/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	150
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	220
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	370
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	110	<100	<100	290
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	180
Total +ve TRH (>C10-C40)	mg/kg	<50	110	<50	<50	470
Surrogate o-Terphenyl	%	80	81	79	81	84

svTRH (C10-C40) in Soil						
Our Reference		338230-50	338230-53	338230-54	338230-55	338230-56
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.3-0.5	1.8-2.0	0.08-0.2	0.3-0.5	0.8-1.0
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	150	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	150	<50	<50
Surrogate o-Terphenyl	%	80	79	80	77	76

svTRH (C10-C40) in Soil						
Our Reference		338230-57	338230-58	338230-59	338230-60	338230-61
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1.0	0.06-0.2	0.4-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	140	<100	<100	120	<100
Total +ve TRH (C10-C36)	mg/kg	140	<50	<50	120	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	120	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	240	<100	<100	200	<100
Total +ve TRH (>C10-C40)	mg/kg	350	<50	<50	200	<50
Surrogate o-Terphenyl	%	80	76	88	79	76

Envirolab Reference: 338230

Page | 32 of 168 Revision No: R00

svTRH (C10-C40) in Soil						
Our Reference		338230-62	338230-63	338230-64	338230-65	338230-66
Your Reference	UNITS	BH117	BH118	BH118	BH118	BH119
Depth		1.3-1.5	0.06-0.2	0.2-0.4	0.7-1.0	0.07-0.2
Date Sampled		16/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	130	<100	<100	140
Total +ve TRH (>C10-C40)	mg/kg	<50	130	<50	<50	140
Surrogate o-Terphenyl	%	77	78	78	80	78

svTRH (C10-C40) in Soil						
Our Reference		338230-67	338230-68	338230-69	338230-70	338230-71
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	0.7-1.0	0.1-0.2	0.2-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	150	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	410	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	570	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	380	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	550	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	930	<50	<50
Surrogate o-Terphenyl	%	78	81	86	78	85

Envirolab Reference: 338230

Page | 33 of 168 Revision No: R00

svTRH (C10-C40) in Soil						
Our Reference		338230-72	338230-73	338230-74	338230-75	338230-76
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	0.7-0.95	0.01-0.16	0.2-0.35
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	120	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	120	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	140	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	130	<100	<100	140	<100
Total +ve TRH (>C10-C40)	mg/kg	270	<50	<50	140	<50
Surrogate o-Terphenyl	%	81	78	85	76	81

svTRH (C10-C40) in Soil						
Our Reference		338230-77	338230-78	338230-79	338230-80	338230-81
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Depth		0.7-1.0	0.08-0.2	0.2-0.5	0.7-1.0	0.05-0.15
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	130	<100	<100	140
Total +ve TRH (C10-C36)	mg/kg	<50	130	<50	<50	140
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	100	<100	<100	110
TRH >C ₃₄ -C ₄₀	mg/kg	<100	190	<100	<100	220
Total +ve TRH (>C10-C40)	mg/kg	<50	290	<50	<50	330
Surrogate o-Terphenyl	%	78	76	77	78	75

svTRH (C10-C40) in Soil						
Our Reference		338230-82	338230-83	338230-84	338230-85	338230-86
Your Reference	UNITS	BH124	BH124	BH125	BH125	BH125
Depth		0.2-0.5	0.6-1.0	0.12-0.3	0.3-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	220	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	940	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	1,200	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	720	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	1,300	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	2,000	<50	<50
Surrogate o-Terphenyl	%	77	84	81	74	75

svTRH (C10-C40) in Soil						
Our Reference		338230-87	338230-88	338230-89	338230-90	338230-91
Your Reference	UNITS	BH126	BH126	BH126	SDUP107	SDUP108
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	76	75	73	69	71

svTRH (C10-C40) in Soil						
Our Reference		338230-92	338230-93	338230-94	338230-95	338230-96
Your Reference	UNITS	SDUP109	SDUP110	SDUP111	SDUP112	TB-S101
Depth		-	-	-	-	-
Date Sampled		17/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	22/11/2023	23/11/2023	23/11/2023	23/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	140	100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	140	100	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	120	<100	<100
TRH >C34 -C40	mg/kg	<100	110	240	210	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	110	360	210	<50
Surrogate o-Terphenyl	%	80	77	80	77	77

PAHs in Soil						
Our Reference		338230-1	338230-3	338230-4	338230-5	338230-6
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1.0	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	0.3	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	0.4	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2	<0.2	0.4	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.05	<0.05	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1
Total +ve PAH's	mg/kg	0.86	<0.05	<0.05	2.2	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	97	122	103	102

PAHs in Soil						
Our Reference		338230-8	338230-9	338230-11	338230-12	338230-13
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.4-0.6	0.7-1.0	0-0.1
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.4
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	2.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	121	97	101	119	98

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-14	338230-16	338230-17	338230-18	338230-19
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2.0	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15/11/2023	15/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.5	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.3	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	2.6	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	120	99	99	122

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-20	338230-21	338230-22	338230-23	338230-24
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.8	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.5	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	4.3	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	102	121	97	98

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-26	338230-27	338230-28	338230-29	338230-31
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.5-0.7	0.8-1.0	0-0.15
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.3
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	1.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	125	102	94	116	96

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-33	338230-34	338230-35	338230-36	338230-37
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.5-0.8	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.5	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.5	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.6	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.3	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	3.0	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	119	96	100	117

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-38	338230-39	338230-40	338230-42	338230-43
Your Reference	UNITS	BH111	BH111	BH111	BH112	BH112
Depth		0-0.1	0.2-0.5	0.5-0.7	0-0.1	0.4-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	0.4	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	0.4	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	<0.05	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	0.2	<0.1
Total +ve PAH's	mg/kg	1.4	<0.05	<0.05	1.8	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	101	116	94	100

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-44	338230-45	338230-46	338230-48	338230-49
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.5-1.7	0-0.1
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	<0.1	0.8
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	<0.1	0.9	<0.1	<0.1	5.0
Pyrene	mg/kg	<0.1	0.9	<0.1	<0.1	5.0
Benzo(a)anthracene	mg/kg	<0.1	0.6	<0.1	<0.1	2.5
Chrysene	mg/kg	<0.1	0.5	<0.1	<0.1	2.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	1	<0.2	<0.2	4.3
Benzo(a)pyrene	mg/kg	<0.05	0.68	<0.05	<0.05	2.4
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.3	<0.1	<0.1	1.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(g,h,i)perylene	mg/kg	<0.1	0.5	<0.1	<0.1	1.8
Total +ve PAH's	mg/kg	<0.05	5.7	<0.05	<0.05	26
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.9	<0.5	<0.5	3.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.9	<0.5	<0.5	3.6
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.99	<0.5	<0.5	3.6
Surrogate p-Terphenyl-d14	%	118	98	99	120	98

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-50	338230-53	338230-54	338230-55	338230-56
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.3-0.5	1.8-2.0	0.08-0.2	0.3-0.5	0.8-1.0
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	119	96	96	113

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-57	338230-58	338230-59	338230-60	338230-61
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1.0	0.06-0.2	0.4-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.2	<0.05	<0.05	<0.05	0.06
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	94	109	94	95

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-62	338230-63	338230-64	338230-65	338230-66
Your Reference	UNITS	BH117	BH118	BH118	BH118	BH119
Depth		1.3-1.5	0.06-0.2	0.2-0.4	0.7-1.0	0.07-0.2
Date Sampled		16/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	117	94	96	119	91

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-67	338230-68	338230-69	338230-70	338230-71
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	0.7-1.0	0.1-0.2	0.2-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.6	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	1	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.65	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.6	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	6.1	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	1.0	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	1.0	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	1.0	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	116	94	90	117

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-72	338230-73	338230-74	338230-75	338230-76
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	0.7-0.95	0.01-0.16	0.2-0.35
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.8	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.5	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	4.0	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	98	118	98	93

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-77	338230-78	338230-79	338230-80	338230-81
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Depth		0.7-1.0	0.08-0.2	0.2-0.5	0.7-1.0	0.05-0.15
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.06	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	0.4	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	95	95	99	94

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-82	338230-83	338230-84	338230-85	338230-86
Your Reference	UNITS	BH124	BH124	BH125	BH125	BH125
Depth		0.2-0.5	0.6-1.0	0.12-0.3	0.3-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.2	0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.06	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	0.3	0.54	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	97	91	96	96

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-87	338230-88	338230-89	338230-90	338230-91
Your Reference	UNITS	BH126	BH126	BH126	SDUP107	SDUP108
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.4	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.6	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	97	98	98	97

Envirolab Reference: 338230

PAHs in Soil						
Our Reference		338230-92	338230-93	338230-94	338230-95	338230-96
Your Reference	UNITS	SDUP109	SDUP110	SDUP111	SDUP112	TB-S101
Depth		-	-	-	-	-
Date Sampled		17/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.3	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	0.3	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	0.2	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	0.4	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	0.2	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	1.1	2.0	0.2	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	92	94	97	92

Envirolab Reference: 338230

Organochlorine Pesticides in soil						
Our Reference		338230-1	338230-3	338230-5	338230-6	338230-9
Your Reference	UNITS	BH101	BH101	BH102	BH102	BH103
Depth		0-0.1	0.7-1.0	0-0.2	0.5-0.7	0.05-0.15
Date Sampled		15/11/2023	15/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	87	95	110	110	102

Organochlorine Pesticides in soil						
Our Reference		338230-11	338230-13	338230-14	338230-17	338230-18
Your Reference	UNITS	BH103	BH104	BH104	BH105	BH105
Depth		0.4-0.6	0-0.1	0.2-0.3	0-0.2	0.4-0.5
Date Sampled		16/11/2023	15/11/2023	15/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	105	106	109	115	108

Organochlorine Pesticides in soil						
Our Reference		338230-20	338230-21	338230-23	338230-24	338230-27
Your Reference	UNITS	BH106	BH106	BH107	BH107	BH108
Depth		0.1-0.3	0.4-0.6	0-0.2	0.5-0.7	0-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Surrogate 4-Chloro-3-NBTF	%	105	110	94	96	97

Organochlorine Pesticides in soil						
Our Reference		338230-28	338230-31	338230-33	338230-35	338230-36
Your Reference	UNITS	BH108	BH109	BH109	BH110	BH110
Depth		0.5-0.7	0-0.15	0.5-0.8	0-0.1	0.5-0.8
Date Sampled		16/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	95	92	95	92	95

Organochlorine Pesticides in soil						
Our Reference		338230-38	338230-39	338230-42	338230-43	338230-45
Your Reference	UNITS	BH111	BH111	BH112	BH112	BH113
Depth		0-0.1	0.2-0.5	0-0.1	0.4-0.7	0-0.2
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	93	95	94	95	94

Organochlorine Pesticides in soil						
Our Reference		338230-46	338230-49	338230-50	338230-54	338230-55
Your Reference	UNITS	BH113	BH114	BH114	BH115	BH115
Depth		0.5-0.7	0-0.1	0.3-0.5	0.08-0.2	0.3-0.5
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	97	96	98	96	93

Organochlorine Pesticides in soil						
Our Reference		338230-57	338230-58	338230-60	338230-61	338230-63
Your Reference	UNITS	BH116	BH116	BH117	BH117	BH118
Depth		0.06-0.2	0.2-0.5	0.06-0.2	0.4-0.7	0.06-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	96	93	93	91	92

Organochlorine Pesticides in soil						
Our Reference		338230-64	338230-66	338230-67	338230-69	338230-70
Your Reference	UNITS	BH118	BH119	BH119	BH120	BH120
Depth		0.2-0.4	0.07-0.2	0.2-0.5	0.1-0.2	0.2-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	94	94	94	95	92

Organochlorine Pesticides in soil						
Our Reference		338230-72	338230-73	338230-75	338230-76	338230-78
Your Reference	UNITS	BH121	BH121	BH122	BH122	BH123
Depth		0-0.2	0.4-0.5	0.01-0.16	0.2-0.35	0.08-0.2
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	96	95	94	94	94

Organochlorine Pesticides in soil						
Our Reference		338230-79	338230-81	338230-82	338230-84	338230-85
Your Reference	UNITS	BH123	BH124	BH124	BH125	BH125
Depth		0.2-0.5	0.05-0.15	0.2-0.5	0.12-0.3	0.3-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	91	94	91	95	93

Organochlorine Pesticides in soil						
Our Reference		338230-87	338230-88	338230-92	338230-93	338230-94
Your Reference	UNITS	BH126	BH126	SDUP109	SDUP110	SDUP111
Depth		0-0.2	0.4-0.5	-	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	95	94	94	95	94

Organochlorine Pesticides in soil		
Our Reference		338230-95
Your Reference	UNITS	SDUP112
Depth		-
Date Sampled		16/11/2023
Type of sample		Soil
Date extracted	-	22/11/2023
Date analysed	-	24/11/2023
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	91

Organophosphorus Pesticides in Soil						
Our Reference		338230-1	338230-3	338230-5	338230-6	338230-9
Your Reference	UNITS	BH101	BH101	BH102	BH102	BH103
Depth		0-0.1	0.7-1.0	0-0.2	0.5-0.7	0.05-0.15
Date Sampled		15/11/2023	15/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	87	95	110	110	102

Organophosphorus Pesticides in Soil						
Our Reference		338230-11	338230-13	338230-14	338230-17	338230-18
Your Reference	UNITS	BH103	BH104	BH104	BH105	BH105
Depth		0.4-0.6	0-0.1	0.2-0.3	0-0.2	0.4-0.5
Date Sampled		16/11/2023	15/11/2023	15/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	105	106	109	115	108

Organophosphorus Pesticides in Soil						
Our Reference		338230-20	338230-21	338230-23	338230-24	338230-27
Your Reference	UNITS	BH106	BH106	BH107	BH107	BH108
Depth		0.1-0.3	0.4-0.6	0-0.2	0.5-0.7	0-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	105	110	94	96	97

Organophosphorus Pesticides in Soil						
Our Reference		338230-28	338230-31	338230-33	338230-35	338230-36
Your Reference	UNITS	BH108	BH109	BH109	BH110	BH110
Depth		0.5-0.7	0-0.15	0.5-0.8	0-0.1	0.5-0.8
Date Sampled		16/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	95	92	95	92	95

Organophosphorus Pesticides in Soil						
Our Reference		338230-38	338230-39	338230-42	338230-43	338230-45
Your Reference	UNITS	BH111	BH111	BH112	BH112	BH113
Depth		0-0.1	0.2-0.5	0-0.1	0.4-0.7	0-0.2
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	93	95	94	95	94

Organophosphorus Pesticides in Soil						
Our Reference		338230-46	338230-49	338230-50	338230-54	338230-55
Your Reference	UNITS	BH113	BH114	BH114	BH115	BH115
Depth		0.5-0.7	0-0.1	0.3-0.5	0.08-0.2	0.3-0.5
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	97	96	98	96	93

Envirolab Reference: 338230 Revision No: R00

Page | **71 of 168**

Organophosphorus Pesticides in Soil						
Our Reference		338230-57	338230-58	338230-60	338230-61	338230-63
Your Reference	UNITS	BH116	BH116	BH117	BH117	BH118
Depth		0.06-0.2	0.2-0.5	0.06-0.2	0.4-0.7	0.06-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	96	93	93	91	92

Organophosphorus Pesticides in Soil						
Our Reference		338230-64	338230-66	338230-67	338230-69	338230-70
Your Reference	UNITS	BH118	BH119	BH119	BH120	BH120
Depth		0.2-0.4	0.07-0.2	0.2-0.5	0.1-0.2	0.2-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	94	94	94	95	92

Organophosphorus Pesticides in Soil						
Our Reference		338230-72	338230-73	338230-75	338230-76	338230-78
Your Reference	UNITS	BH121	BH121	BH122	BH122	BH123
Depth		0-0.2	0.4-0.5	0.01-0.16	0.2-0.35	0.08-0.2
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	96	95	94	94	94

Organophosphorus Pesticides in Soil						
Our Reference		338230-79	338230-81	338230-82	338230-84	338230-85
Your Reference	UNITS	BH123	BH124	BH124	BH125	BH125
Depth		0.2-0.5	0.05-0.15	0.2-0.5	0.12-0.3	0.3-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	91	94	91	95	93

Organophosphorus Pesticides in Soil						
Our Reference		338230-87	338230-88	338230-92	338230-93	338230-94
Your Reference	UNITS	BH126	BH126	SDUP109	SDUP110	SDUP111
Depth		0-0.2	0.4-0.5	-	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	95	94	94	95	94

Organophosphorus Pesticides in Soil		
Our Reference		338230-95
Your Reference	UNITS	SDUP112
Depth		-
Date Sampled		16/11/2023
Type of sample		Soil
Date extracted	-	22/11/2023
Date analysed	-	24/11/2023
Dichlorvos	mg/kg	<0.1
Mevinphos	mg/kg	<0.1
Phorate	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Disulfoton	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Parathion-Methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Fenthion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Methidathion	mg/kg	<0.1
Fenamiphos	mg/kg	<0.1
Ethion	mg/kg	<0.1
Phosalone	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Coumaphos	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	91

PCBs in Soil						
Our Reference		338230-1	338230-3	338230-5	338230-6	338230-9
Your Reference	UNITS	BH101	BH101	BH102	BH102	BH103
Depth		0-0.1	0.7-1.0	0-0.2	0.5-0.7	0.05-0.15
Date Sampled		15/11/2023	15/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	87	91	98	98	98

PCBs in Soil						
Our Reference		338230-11	338230-13	338230-14	338230-17	338230-18
Your Reference	UNITS	BH103	BH104	BH104	BH105	BH105
Depth		0.4-0.6	0-0.1	0.2-0.3	0-0.2	0.4-0.5
Date Sampled		16/11/2023	15/11/2023	15/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	98	99	96	97	97

PCBs in Soil						
Our Reference		338230-20	338230-21	338230-23	338230-24	338230-27
Your Reference	UNITS	BH106	BH106	BH107	BH107	BH108
Depth		0.1-0.3	0.4-0.6	0-0.2	0.5-0.7	0-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	98	99	96	98	98

PCBs in Soil						
Our Reference		338230-28	338230-31	338230-33	338230-35	338230-36
Your Reference	UNITS	BH108	BH109	BH109	BH110	BH110
Depth		0.5-0.7	0-0.15	0.5-0.8	0-0.1	0.5-0.8
Date Sampled		16/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	96	96	95	94	96

PCBs in Soil						
Our Reference		338230-38	338230-39	338230-42	338230-43	338230-45
Your Reference	UNITS	BH111	BH111	BH112	BH112	BH113
Depth		0-0.1	0.2-0.5	0-0.1	0.4-0.7	0-0.2
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	94	100	96	95	96

PCBs in Soil						
Our Reference		338230-46	338230-49	338230-50	338230-54	338230-55
Your Reference	UNITS	BH113	BH114	BH114	BH115	BH115
Depth		0.5-0.7	0-0.1	0.3-0.5	0.08-0.2	0.3-0.5
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	98	92	98	96	98

PCBs in Soil						
Our Reference		338230-57	338230-58	338230-60	338230-61	338230-63
Your Reference	UNITS	BH116	BH116	BH117	BH117	BH118
Depth		0.06-0.2	0.2-0.5	0.06-0.2	0.4-0.7	0.06-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	94	95	94	95	93

PCBs in Soil						
Our Reference		338230-64	338230-66	338230-67	338230-69	338230-70
Your Reference	UNITS	BH118	BH119	BH119	BH120	BH120
Depth		0.2-0.4	0.07-0.2	0.2-0.5	0.1-0.2	0.2-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	94	96	94	96	93

PCBs in Soil						
Our Reference		338230-72	338230-73	338230-75	338230-76	338230-78
Your Reference	UNITS	BH121	BH121	BH122	BH122	BH123
Depth		0-0.2	0.4-0.5	0.01-0.16	0.2-0.35	0.08-0.2
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	94	97	96	95	93

PCBs in Soil						
Our Reference		338230-79	338230-81	338230-82	338230-84	338230-85
Your Reference	UNITS	BH123	BH124	BH124	BH125	BH125
Depth		0.2-0.5	0.05-0.15	0.2-0.5	0.12-0.3	0.3-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	89	95	94	97	95

PCBs in Soil						
Our Reference		338230-87	338230-88	338230-92	338230-93	338230-94
Your Reference	UNITS	BH126	BH126	SDUP109	SDUP110	SDUP111
Depth		0-0.2	0.4-0.5	-	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	93	95	93	98	95

PCBs in Soil		
Our Reference		338230-95
Your Reference	UNITS	SDUP112
Depth		-
Date Sampled		16/11/2023
Type of sample		Soil
Date extracted	-	22/11/2023
Date analysed	-	24/11/2023
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-Fluorobiphenyl	%	94

Acid Extractable metals in soil						
Our Reference		338230-1	338230-3	338230-4	338230-5	338230-6
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1.0	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	16	7	15	14
Copper	mg/kg	20	12	14	27	14
Lead	mg/kg	120	14	7	49	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	17	2	2	20	2
Zinc	mg/kg	48	4	6	43	4

Acid Extractable metals in soil						
Our Reference		338230-8	338230-9	338230-11	338230-12	338230-13
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.4-0.6	0.7-1.0	0-0.1
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	6	<4	5	6	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	18	17	13	20
Copper	mg/kg	15	73	14	17	24
Lead	mg/kg	15	2	10	14	71
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	140	3	2	8
Zinc	mg/kg	11	50	6	6	68

Acid Extractable metals in soil						
Our Reference		338230-14	338230-16	338230-17	338230-18	338230-19
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2.0	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15/11/2023	15/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	5	9	4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	10	11	21	16	12
Copper	mg/kg	2	15	9	16	12
Lead	mg/kg	15	16	29	11	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	5	3	2
Zinc	mg/kg	2	6	21	10	8

Acid Extractable metals in soil						
Our Reference		338230-20	338230-21	338230-22	338230-23	338230-24
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	6	<4	<4	5	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	16	7	15	11
Copper	mg/kg	20	12	6	10	13
Lead	mg/kg	20	9	5	16	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	3	1	2	1
Zinc	mg/kg	15	7	4	6	6

Acid Extractable metals in soil						
Our Reference		338230-26	338230-27	338230-28	338230-29	338230-31
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.5-0.7	0.8-1.0	0-0.15
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	9	4	<4	5
Cadmium	mg/kg	<0.4	0.5	<0.4	<0.4	1
Chromium	mg/kg	5	25	12	12	14
Copper	mg/kg	8	8	10	10	21
Lead	mg/kg	6	42	10	11	59
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	2	3	2	2	11
Zinc	mg/kg	3	20	6	6	76

Acid Extractable metals in soil						
Our Reference		338230-33	338230-34	338230-35	338230-36	338230-37
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.5-0.8	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	4	<4	<4	4	<4
Cadmium	mg/kg	<0.4	<0.4	0.6	<0.4	<0.4
Chromium	mg/kg	14	8	10	17	8
Copper	mg/kg	12	11	17	11	6
Lead	mg/kg	12	8	74	13	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	7	3	1
Zinc	mg/kg	6	7	56	10	4

Acid Extractable metals in soil						
Our Reference		338230-38	338230-39	338230-40	338230-42	338230-43
Your Reference	UNITS	BH111	BH111	BH111	BH112	BH112
Depth		0-0.1	0.2-0.5	0.5-0.7	0-0.1	0.4-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	5	5	4	5	6
Cadmium	mg/kg	0.6	<0.4	<0.4	0.4	<0.4
Chromium	mg/kg	18	16	14	20	18
Copper	mg/kg	28	10	14	15	11
Lead	mg/kg	50	12	11	45	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	12	3	3	6	3
Zinc	mg/kg	70	10	11	36	9

Acid Extractable metals in soil						
Our Reference		338230-44	338230-45	338230-46	338230-48	338230-49
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.5-1.7	0-0.1
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	5	4	<4	7	<4
Cadmium	mg/kg	<0.4	0.4	<0.4	<0.4	1
Chromium	mg/kg	11	45	15	20	16
Copper	mg/kg	15	25	13	21	46
Lead	mg/kg	16	150	11	16	77
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	7	3	3	16
Zinc	mg/kg	8	37	9	12	89

Acid Extractable metals in soil						
Our Reference		338230-50	338230-53	338230-54	338230-55	338230-56
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.3-0.5	1.8-2.0	0.08-0.2	0.3-0.5	0.8-1.0
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	6	7	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	17	17	8	13
Copper	mg/kg	15	16	55	6	16
Lead	mg/kg	13	15	2	14	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	2	100	6	3
Zinc	mg/kg	14	8	40	20	11

Acid Extractable metals in soil						
Our Reference		338230-57	338230-58	338230-59	338230-60	338230-61
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1.0	0.06-0.2	0.4-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	<4	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	32	10	16	16	8
Copper	mg/kg	79	10	18	64	6
Lead	mg/kg	2	11	11	2	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	130	16	3	120	7
Zinc	mg/kg	50	21	10	42	25

Acid Extractable metals in soil						
Our Reference		338230-62	338230-63	338230-64	338230-65	338230-66
Your Reference	UNITS	BH117	BH118	BH118	BH118	BH119
Depth		1.3-1.5	0.06-0.2	0.2-0.4	0.7-1.0	0.07-0.2
Date Sampled		16/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	6	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	16	7	15	24
Copper	mg/kg	17	67	10	19	68
Lead	mg/kg	12	2	16	9	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	100	3	5	120
Zinc	mg/kg	9	43	17	17	55

Acid Extractable metals in soil						
Our Reference		338230-67	338230-68	338230-69	338230-70	338230-71
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	0.7-1.0	0.1-0.2	0.2-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	7	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	18	6	11	16
Copper	mg/kg	18	30	87	14	13
Lead	mg/kg	14	14	2	11	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	24	7	24	3	4
Zinc	mg/kg	30	28	29	12	13

Acid Extractable metals in soil						
Our Reference		338230-72	338230-73	338230-74	338230-75	338230-76
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	0.7-0.95	0.01-0.16	0.2-0.35
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	8	6	4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	34	16	15	10	14
Copper	mg/kg	29	16	16	70	9
Lead	mg/kg	35	12	15	4	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	13	5	5	76	9
Zinc	mg/kg	91	19	21	41	29

Acid Extractable metals in soil						
Our Reference		338230-77	338230-78	338230-79	338230-80	338230-81
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Depth		0.7-1.0	0.08-0.2	0.2-0.5	0.7-1.0	0.05-0.15
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	6	<4	<4	6	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	16	7	15	13
Copper	mg/kg	15	74	5	25	34
Lead	mg/kg	12	2	13	16	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	100	5	3	79
Zinc	mg/kg	13	42	18	17	34

Acid Extractable metals in soil						
Our Reference		338230-82	338230-83	338230-84	338230-85	338230-86
Your Reference	UNITS	BH124	BH124	BH125	BH125	BH125
Depth		0.2-0.5	0.6-1.0	0.12-0.3	0.3-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	7	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	19	8	12	16
Copper	mg/kg	8	21	110	10	14
Lead	mg/kg	18	19	4	13	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	7	14	15	4
Zinc	mg/kg	24	18	32	21	12

Acid Extractable metals in soil						
Our Reference		338230-87	338230-88	338230-89	338230-90	338230-91
Your Reference	UNITS	BH126	BH126	BH126	SDUP107	SDUP108
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	4	<4	<4	5	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.5
Chromium	mg/kg	13	15	13	15	23
Copper	mg/kg	10	12	14	10	9
Lead	mg/kg	23	10	9	15	39
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	4	4	2	4
Zinc	mg/kg	18	11	12	7	24

Envirolab Reference: 338230

Revision No: R00

Acid Extractable metals in soil						
Our Reference		338230-92	338230-93	338230-94	338230-95	338230-96
Your Reference	UNITS	SDUP109	SDUP110	SDUP111	SDUP112	TB-S101
Depth		-	-	-	-	-
Date Sampled		17/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	5	4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	16	20	14	3
Copper	mg/kg	12	28	76	88	<1
Lead	mg/kg	22	50	2	2	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	24	120	130	<1
Zinc	mg/kg	17	49	45	48	2

Acid Extractable metals in soil			
Our Reference		338230-258	338230-259
Your Reference	UNITS	BH101 - [TRIPLICATE]	BH121 - [TRIPLICATE]
Depth		0-0.1	0-0.2
Date Sampled		15/11/2023	17/11/2023
Type of sample		Soil	Soil
Date prepared	-	22/11/2023	22/11/2023
Date analysed	-	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	7
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	12	20
Copper	mg/kg	20	26
Lead	mg/kg	110	42
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	22	13
Zinc	mg/kg	45	51

Moisture						
Our Reference		338230-1	338230-3	338230-4	338230-5	338230-6
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1.0	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	12	16	18	7.5	19
Moisture						
Our Reference		338230-8	338230-9	338230-11	338230-12	338230-13
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.4-0.6	0.7-1.0	0-0.1
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	15	9.8	22	22	23
Moisture						
Our Reference		338230-14	338230-16	338230-17	338230-18	338230-19
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2.0	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15/11/2023	15/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	14	20	12	17	19
Moisture						
Our Reference		338230-20	338230-21	338230-22	338230-23	338230-24
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	8.7	17	16	17	20

Moisture Our Reference		338230-26	338230-27	338230-28	338230-29	338230-31
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.5-0.7	0.8-1.0	0-0.15
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	19	8.8	16	17	15
Moisture						
Our Reference		338230-33	338230-34	338230-35	338230-36	338230-37
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.5-0.8	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	14	18	13	16	14
Moisture						
Our Reference		338230-38	338230-39	338230-40	338230-42	338230-43
Your Reference	UNITS	BH111	BH111	BH111	BH112	BH112
Depth		0-0.1	0.2-0.5	0.5-0.7	0-0.1	0.4-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	19	17	18	11	15
Moisture						
Our Reference		338230-44	338230-45	338230-46	338230-48	338230-49
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.5-1.7	0-0.1
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	20	8.3	19	18	10

Moisture Our Reference		338230-50	338230-53	338230-54	338230-55	338230-56
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.3-0.5	1.8-2.0	0.08-0.2	0.3-0.5	0.8-1.0
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	16	14	7.6	8.0	19
Moisture						
Our Reference		338230-57	338230-58	338230-59	338230-60	338230-61
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1.0	0.06-0.2	0.4-0.7
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	7.0	7.9	19	6.8	9.4
Moisture						
Our Reference		338230-62	338230-63	338230-64	338230-65	338230-66
Your Reference	UNITS	BH117	BH118	BH118	BH118	BH119
Depth		1.3-1.5	0.06-0.2	0.2-0.4	0.7-1.0	0.07-0.2
Date Sampled		16/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	19	6.9	8.6	12	7.0
Moisture						
Our Reference		338230-67	338230-68	338230-69	338230-70	338230-71
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	0.7-1.0	0.1-0.2	0.2-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	8.7	20	3.3	12	18

Moisture Our Reference		338230-72	220220 72	338230-74	338230-75	220220.76
	LINUTO		338230-73			338230-76
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	0.7-0.95	0.01-0.16	0.2-0.35
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	10	19	17	7.5	6.0
Moisture						
Our Reference		338230-77	338230-78	338230-79	338230-80	338230-81
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Depth		0.7-1.0	0.08-0.2	0.2-0.5	0.7-1.0	0.05-0.15
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	24/11/2023	24/11/2023
Moisture	%	20	7.6	9.7	18	6.7
Moisture						
Our Reference		338230-82	338230-83	338230-84	338230-85	338230-86
Your Reference	UNITS	BH124	BH124	BH125	BH125	BH125
Depth		0.2-0.5	0.6-1.0	0.12-0.3	0.3-0.5	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Moisture	%	8.0	21	3.1	8.1	17
Moisture						
Our Reference		338230-87	338230-88	338230-89	338230-90	338230-91
Your Reference	UNITS	BH126	BH126	BH126	SDUP107	SDUP108
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17/11/2023	17/11/2023	17/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date prepared Date analysed	-	23/11/2023 24/11/2023	23/11/2023 24/11/2023	23/11/2023 24/11/2023	23/11/2023 24/11/2023	23/11/2023 24/11/2023

Moisture						
Our Reference		338230-92	338230-93	338230-94	338230-95	338230-96
Your Reference	UNITS	SDUP109	SDUP110	SDUP111	SDUP112	TB-S101
Depth		-	-	-	-	-
Date Sampled		17/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Moisture	%	11	6.8	5.5	6.5	2.0
Moisture						
Our Reference		338230-99	338230-101	338230-102	338230-104	338230-106
Your Reference	UNITS	BH101	BH101	BH101	BH102	BH102
Depth		0-0.1	0.7-1	1.3-1.5	0-0.2	0.9-1
Date Sampled		15.11.2023	15.11.2023	15.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	19	16	15	12	18
Moisture						
Our Reference		338230-107	338230-115	338230-116	338230-118	338230-120
Your Reference	UNITS	BH102	BH103	BH103	BH103	BH104
Depth		1.7-1.95	0.05-0.15	0.2-0.4	0.7-1	0-0.1
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	15.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	15	6.2	10	22	21
Moisture						
Our Reference		338230-121	338230-123	338230-124	338230-125	338230-126
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH105
Depth		0.2-0.3	1.7-2	0-0.2	0.4-0.5	0.7-0.95
Date Sampled		15.11.2023	15.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	13	21	12	18	19

Moisture						
Our Reference		338230-132	338230-133	338230-134	338230-136	338230-137
Your Reference	UNITS	BH106	BH106	BH106	BH107	BH107
Depth		0.1-0.3	0.4-0.6	1.3-1.5	0-0.2	0.5-0.7
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	8.3	17	15	18	20
Moisture						
Our Reference		338230-139	338230-146	338230-148	338230-150	338230-154
Your Reference	UNITS	BH107	BH108	BH108	BH108	BH109
Depth		1.5-1.7	0-0.2	0.8-0.9	1.9-2	0-0.15
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	15.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	19	13	25	15	12
Moisture						
Our Reference		338230-155	338230-157	338230-159	338230-160	338230-161
Your Reference	UNITS	BH109	BH109	BH110	BH110	BH110
Depth		0.2-0.5	1.3-1.5	0-0.1	0.5-0.8	1.3-1.5
Date Sampled		15.11.2023	15.11.2023	45 44 0000	15 11 2022	
			13.11.2023	15.11.2023	15.11.2023	15.11.2023
Type of sample		Soil	Soil	15.11.2023 Soil	Soil	15.11.2023 Soil
Type of sample Date prepared	-	Soil 22/11/2023				
	-		Soil	Soil	Soil	Soil
Date prepared	- - %	22/11/2023	Soil 22/11/2023	Soil 22/11/2023	Soil 22/11/2023	Soil 22/11/2023
Date prepared Date analysed	- - %	22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023
Date prepared Date analysed Moisture	- - %	22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023
Date prepared Date analysed Moisture	- - % UNITS	22/11/2023 23/11/2023 9.9	Soil 22/11/2023 23/11/2023 19	Soil 22/11/2023 23/11/2023 12	Soil 22/11/2023 23/11/2023 16	Soil 22/11/2023 23/11/2023 15
Date prepared Date analysed Moisture Moisture Our Reference		22/11/2023 23/11/2023 9.9 338230-163	Soil 22/11/2023 23/11/2023 19 338230-164	Soil 22/11/2023 23/11/2023 12 338230-166	Soil 22/11/2023 23/11/2023 16 338230-168	Soil 22/11/2023 23/11/2023 15 338230-169
Date prepared Date analysed Moisture Moisture Our Reference Your Reference		22/11/2023 23/11/2023 9.9 338230-163 BH111	Soil 22/11/2023 23/11/2023 19 338230-164 BH111	Soil 22/11/2023 23/11/2023 12 338230-166 BH111	Soil 22/11/2023 23/11/2023 16 338230-168 BH112	Soil 22/11/2023 23/11/2023 15 338230-169 BH112
Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth		22/11/2023 23/11/2023 9.9 338230-163 BH111 0-0.1	Soil 22/11/2023 23/11/2023 19 338230-164 BH111 0.2-0.5	Soil 22/11/2023 23/11/2023 12 338230-166 BH111 1.3-1.5	Soil 22/11/2023 23/11/2023 16 338230-168 BH112 0-0.1	Soil 22/11/2023 23/11/2023 15 338230-169 BH112 0.4-0.7
Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled		22/11/2023 23/11/2023 9.9 338230-163 BH111 0-0.1 15.11.2023	Soil 22/11/2023 23/11/2023 19 338230-164 BH111 0.2-0.5 15.11.2023	Soil 22/11/2023 23/11/2023 12 338230-166 BH111 1.3-1.5 15.11.2023	Soil 22/11/2023 23/11/2023 16 338230-168 BH112 0-0.1 15.11.2023	Soil 22/11/2023 23/11/2023 15 338230-169 BH112 0.4-0.7 15.11.2023
Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample		22/11/2023 23/11/2023 9.9 338230-163 BH111 0-0.1 15.11.2023 Soil	Soil 22/11/2023 23/11/2023 19 338230-164 BH111 0.2-0.5 15.11.2023 Soil	Soil 22/11/2023 23/11/2023 12 338230-166 BH111 1.3-1.5 15.11.2023 Soil	Soil 22/11/2023 23/11/2023 16 338230-168 BH112 0-0.1 15.11.2023 Soil	Soil 22/11/2023 23/11/2023 15 338230-169 BH112 0.4-0.7 15.11.2023 Soil

Moisture		000000 470	000000 470	000000 470	000000 470	000000 400
Our Reference		338230-170	338230-172	338230-173	338230-176	338230-180
Your Reference	UNITS	BH112	BH113	BH113	BH113	BH114
Depth		1.2-1.5	0-0.2	0.5-0.7	1.9-2	0-0.1
Date Sampled		15.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	16	7.5	26	18	6.1
Moisture						
Our Reference		338230-182	338230-184	338230-189	338230-190	338230-192
Your Reference	UNITS	BH114	BH114	BH115	BH115	BH115
Depth		0.8-0.95	1.8-2	0.08-0.2	0.3-0.5	1.9-2
Date Sampled		16.11.2023	16.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	17	16	6.7	7.2	18
Moisture						
Our Reference		338230-193	338230-194	338230-195	338230-197	338230-198
Your Reference	UNITS	BH116	BH116	BH116	BH117	BH117
Depth		0.06-0.2	0.2-0.5	0.7-1	0.06-0.2	0.4-0.7
Date Sampled		16.11.2023	16.11.2023	16 11 2022	40 44 0000	
Time of commit			10.11.2023	16.11.2023	16.11.2023	16.11.2023
Type of sample		Soil	Soil	Soil	Soil	16.11.2023 Soil
Type of sample Date prepared	-	Soil 22/11/2023				
	-		Soil	Soil	Soil	Soil
Date prepared	- - %	22/11/2023	Soil 22/11/2023	Soil 22/11/2023	Soil 22/11/2023	Soil 22/11/2023
Date prepared Date analysed	- - %	22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023
Date prepared Date analysed Moisture	- - %	22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023	Soil 22/11/2023 23/11/2023
Date prepared Date analysed Moisture	- - % UNITS	22/11/2023 23/11/2023 7.0	Soil 22/11/2023 23/11/2023 9.0	Soil 22/11/2023 23/11/2023 19	Soil 22/11/2023 23/11/2023 5.5	Soil 22/11/2023 23/11/2023 10
Date prepared Date analysed Moisture Moisture Our Reference		22/11/2023 23/11/2023 7.0 338230-199	Soil 22/11/2023 23/11/2023 9.0 338230-201	Soil 22/11/2023 23/11/2023 19 338230-202	Soil 22/11/2023 23/11/2023 5.5	Soil 22/11/2023 23/11/2023 10 338230-205
Date prepared Date analysed Moisture Moisture Our Reference Your Reference		22/11/2023 23/11/2023 7.0 338230-199 BH117	Soil 22/11/2023 23/11/2023 9.0 338230-201 BH118	Soil 22/11/2023 23/11/2023 19 338230-202 BH118	Soil 22/11/2023 23/11/2023 5.5 338230-203 BH118	Soil 22/11/2023 23/11/2023 10 338230-205 BH119
Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth		22/11/2023 23/11/2023 7.0 338230-199 BH117 1.3-1.5	Soil 22/11/2023 23/11/2023 9.0 338230-201 BH118 0.06-0.2	Soil 22/11/2023 23/11/2023 19 338230-202 BH118 0.2-0.4	Soil 22/11/2023 23/11/2023 5.5 338230-203 BH118 0.7-0.1	Soil 22/11/2023 23/11/2023 10 338230-205 BH119 0.07-0.2
Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled		22/11/2023 23/11/2023 7.0 338230-199 BH117 1.3-1.5 16/11/2023	Soil 22/11/2023 23/11/2023 9.0 338230-201 BH118 0.06-0.2 17.11.2023	Soil 22/11/2023 23/11/2023 19 338230-202 BH118 0.2-0.4 17.11.2023	Soil 22/11/2023 23/11/2023 5.5 338230-203 BH118 0.7-0.1 17.11.2023	Soil 22/11/2023 23/11/2023 10 338230-205 BH119 0.07-0.2 17.11.2023
Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample		22/11/2023 23/11/2023 7.0 338230-199 BH117 1.3-1.5 16/11/2023 Soil	Soil 22/11/2023 23/11/2023 9.0 338230-201 BH118 0.06-0.2 17.11.2023 Soil	Soil 22/11/2023 23/11/2023 19 338230-202 BH118 0.2-0.4 17.11.2023 Soil	Soil 22/11/2023 23/11/2023 5.5 338230-203 BH118 0.7-0.1 17.11.2023 Soil	Soil 22/11/2023 23/11/2023 10 338230-205 BH119 0.07-0.2 17.11.2023 Soil

Moisture		220220 200	220220 200	220220 200	220220 240	220220 244
Our Reference		338230-206	338230-208	338230-209	338230-210	338230-211
Your Reference	UNITS	BH119	BH119	BH120	BH120	BH120
Depth		0.2-0.5	1.9-2	0.1-0.2	0.2-0.5	0.7-1
Date Sampled		17.11.2023	17.11.2023	17/11/2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	8.1	18	4.2	14	18
Moisture						
Our Reference		338230-213	338230-214	338230-216	338230-224	338230-225
Your Reference	UNITS	BH121	BH121	BH121	BH122	BH122
Depth		0-0.2	0.4-0.5	1.7-1.95	0.01-0.16	0.2-0.35
Date Sampled		17.11.2023	17.11.2023	17.11.2023	17.11.2023	17.11.2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	6.3	18	19	8.3	6.6
Moisture						
Our Reference		338230-226	338230-228	338230-229	338230-230	338230-231
Your Reference	UNITS	BH122	BH123	BH123	BH123	BH124
Your Reference Depth	UNITS	BH122 0.7-1	BH123 0.08-0.2	BH123 0.2-0.5	BH123 0.7-1	BH124 0.05-0.15
	UNITS					
Depth	UNITS	0.7-1	0.08-0.2	0.2-0.5	0.7-1	0.05-0.15
Depth Date Sampled	UNITS -	0.7-1 17.11.2023	0.08-0.2 17.11.2023	0.2-0.5 17.11.2023	0.7-1 17.11.2023	0.05-0.15 17.11.2023
Depth Date Sampled Type of sample	UNITS - -	0.7-1 17.11.2023 Soil	0.08-0.2 17.11.2023 Soil	0.2-0.5 17.11.2023 Soil	0.7-1 17.11.2023 Soil	0.05-0.15 17.11.2023 Soil
Depth Date Sampled Type of sample Date prepared	- - - %	0.7-1 17.11.2023 Soil 22/11/2023	0.08-0.2 17.11.2023 Soil 22/11/2023	0.2-0.5 17.11.2023 Soil 22/11/2023	0.7-1 17.11.2023 Soil 22/11/2023	0.05-0.15 17.11.2023 Soil 22/11/2023
Depth Date Sampled Type of sample Date prepared Date analysed	- -	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023
Depth Date Sampled Type of sample Date prepared Date analysed Moisture	- -	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023
Depth Date Sampled Type of sample Date prepared Date analysed Moisture	- -	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 20	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023 7.0	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023 9.2	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 18	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023 7.6
Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference	- - %	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 20	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023 7.0	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023 9.2	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 18	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023 7.6
Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference	- - %	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 20 338230-232 BH124	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023 7.0 338230-234 BH124	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023 9.2 338230-235 BH125	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 18 338230-236 BH125	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023 7.6 338230-237 BH125
Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth	- - %	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 20 338230-232 BH124 0.2-0.5	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023 7.0 338230-234 BH124 1.9-2	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023 9.2 338230-235 BH125 0.12-0.3	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 18 338230-236 BH125 0.35	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023 7.6 338230-237 BH125 0.7-1
Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled	- - %	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 20 338230-232 BH124 0.2-0.5 17.11.2023	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023 7.0 338230-234 BH124 1.9-2 17.11.2023	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023 9.2 338230-235 BH125 0.12-0.3 17.11.2023	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 18 338230-236 BH125 0.35 17.11.2023	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023 7.6 338230-237 BH125 0.7-1 17.11.2023
Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled Type of sample	- - %	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 20 338230-232 BH124 0.2-0.5 17.11.2023 Soil	0.08-0.2 17.11.2023 Soil 22/11/2023 23/11/2023 7.0 338230-234 BH124 1.9-2 17.11.2023 Soil	0.2-0.5 17.11.2023 Soil 22/11/2023 23/11/2023 9.2 338230-235 BH125 0.12-0.3 17.11.2023 Soil	0.7-1 17.11.2023 Soil 22/11/2023 23/11/2023 18 338230-236 BH125 0.35 17.11.2023 Soil	0.05-0.15 17.11.2023 Soil 22/11/2023 23/11/2023 7.6 338230-237 BH125 0.7-1 17.11.2023 Soil

Moisture						
Our Reference		338230-239	338230-240	338230-241	338230-251	338230-252
Your Reference	UNITS	BH126	BH126	BH126	SDUP105	SDUP106
Depth		0-0.2	0.4-0.5	0.7-0.95	-	-
Date Sampled		17.11.2023	17.11.2023	17.11.2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Moisture	%	15	16	19	23	7.9

Moisture				
Our Reference		338230-253	338230-255	338230-257
Your Reference	UNITS	SDUP107	SDUP112	TB-S101
Depth		-	-	-
Date Sampled		16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	22/11/2023	22/11/2023	22/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023
Moisture	%	10	6.8	0.1

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-1	338230-3	338230-5	338230-9	338230-11
Your Reference	UNITS	BH101	BH101	BH102	BH103	BH103
Depth		0-0.1	0.7-1.0	0-0.2	0.05-0.15	0.4-0.6
Date Sampled		15/11/2023	15/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	600.83	533.39	840.63	454.02	326.2
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	_	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-13	338230-14	338230-17	338230-18	338230-20
Your Reference	UNITS	BH104	BH104	BH105	BH105	BH106
Depth		0-0.1	0.2-0.3	0-0.2	0.4-0.5	0.1-0.3
Date Sampled		15/11/2023	15/11/2023	17/11/2023	17/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	334.45	413.7	660.06	614.57	250.51
Sample Description	-	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos#1	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Envirolab Reference: 338230

Revision No: R00

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-21	338230-23	338230-27	338230-31	338230-33
Your Reference	UNITS	BH106	BH107	BH108	BH109	BH109
Depth		0.4-0.6	0-0.2	0-0.2	0-0.15	0.5-0.8
Date Sampled		16/11/2023	16/11/2023	16/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	525.26	510.68	591.45	560.71	434.06
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	-	-	-
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-35	338230-36	338230-38	338230-42	338230-43
Your Reference	UNITS	BH110	BH110	BH111	BH112	BH112
Depth		0-0.1	0.5-0.8	0-0.1	0-0.1	0.4-0.7
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	575.2	508.37	532.29	562.9	350.43
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos#1	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	-	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-45	338230-49	338230-50	338230-54	338230-55
Your Reference	UNITS	BH113	BH114	BH114	BH115	BH115
Depth		0-0.2	0-0.1	0.3-0.5	0.08-0.2	0.3-0.5
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	517.3	878.88	760.36	524.96	557.58
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	-	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-57	338230-58	338230-60	338230-61	338230-63
Your Reference	UNITS	BH116	BH116	BH117	BH117	BH118
Depth		0.06-0.2	0.2-0.5	0.06-0.2	0.4-0.7	0.06-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	879.73	602.6	940.95	582.29	853.43
Sample Description	-	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trans Analysis		detected No asbestos	detected No asbestos	detected No asbestos	detected No asbestos	detected No asbestos
Trace Analysis	-	detected	detected	detected	detected	detected
Total Asbestos#1	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	-	_	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-64	338230-66	338230-67	338230-69	338230-70
Your Reference	UNITS	BH118	BH119	BH119	BH120	BH120
Depth		0.2-0.4	0.07-0.2	0.2-0.5	0.1-0.2	0.2-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	542.33	732.72	646.05	656.9	279.78
Sample Description	-	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks	Black fine-grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos	detected No asbestos	detected No asbestos	detected No asbestos	detected No asbestos
Trace / tharyon		detected	detected	detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	-	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-72	338230-73	338230-75	338230-76	338230-78
Your Reference	UNITS	BH121	BH121	BH122	BH122	BH123
Depth		0-0.2	0.4-0.5	0.01-0.16	0.2-0.35	0.08-0.2
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	832.39	626.13	798.09	700.86	830.9
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Grey fine-grained soil & rocks	Beige fine- grained soil & rocks	Grey fine-grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	-	_
FA and AF Estimation*	g	_	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		338230-79	338230-81	338230-82	338230-84	338230-85
Your Reference	UNITS	BH123	BH124	BH124	BH125	BH125
Depth		0.2-0.5	0.05-0.15	0.2-0.5	0.12-0.3	0.3-0.5
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Sample mass tested	g	823.71	534.88	717.24	786.19	750.37
Sample Description	-	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks	Grey fine-grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	_	detected No asbestos	detected No asbestos	detected No asbestos	detected No asbestos	detected No asbestos
Trace Arialysis		detected	detected	detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	-	-	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001			
Our Reference		338230-87	338230-88
Your Reference	UNITS	BH126	BH126
Depth		0-0.2	0.4-0.5
Date Sampled		17/11/2023	17/11/2023
Type of sample		Soil	Soil
Date analysed	-	29/11/2023	29/11/2023
Sample mass tested	g	589	556.14
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos#1	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_
FA and AF Estimation*	g	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

PFAS in Waters Short		
Our Reference		338230-98
Your Reference	UNITS	FR-101-SPT
Depth		-
Date Sampled		16/11/2023
Type of sample		Water
Date prepared	-	23/11/2023
Date analysed	-	23/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01
6:2 FTS	μg/L	<0.01
8:2 FTS	μg/L	<0.02
Surrogate ¹³ C ₈ PFOS	%	101
Surrogate ¹³ C ₂ PFOA	%	99
Extracted ISTD 18 O ₂ PFHxS	%	95
Extracted ISTD 13 C4 PFOS	%	98
Extracted ISTD 13 C4 PFOA	%	116
Extracted ISTD 13 C2 6:2FTS	%	154
Extracted ISTD 13 C ₂ 8:2FTS	%	174
Total Positive PFHxS & PFOS	μg/L	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01
Total Positive PFAS	μg/L	<0.01

vTRH(C6-C10)/BTEXN in Water		
Our Reference		338230-98
Your Reference	UNITS	FR-101-SPT
Depth		-
Date Sampled		16/11/2023
Type of sample		Water
Date extracted	-	24/11/2023
Date analysed	-	27/11/2023
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	118
Surrogate Toluene-d8	%	98
Surrogate 4-Bromofluorobenzene	%	93

svTRH (C10-C40) in Water		
Our Reference		338230-98
Your Reference	UNITS	FR-101-SPT
Depth		-
Date Sampled		16/11/2023
Type of sample		Water
Date extracted	-	24/11/2023
Date analysed	-	25/11/2023
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	120
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	120
TRH >C ₁₀ - C ₁₆	μg/L	110
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	110
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	110
Surrogate o-Terphenyl	%	82

PAHs in Water		
Our Reference		338230-98
Your Reference	UNITS	FR-101-SPT
Depth		-
Date Sampled		16/11/2023
Type of sample		Water
Date extracted	-	24/11/2023
Date analysed	-	27/11/2023
Naphthalene	μg/L	<0.1
Acenaphthylene	μg/L	<0.1
Acenaphthene	μg/L	<0.1
Fluorene	μg/L	<0.1
Phenanthrene	μg/L	<0.1
Anthracene	μg/L	<0.1
Fluoranthene	μg/L	<0.1
Pyrene	μg/L	<0.1
Benzo(a)anthracene	μg/L	<0.1
Chrysene	μg/L	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	μg/L	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5
Total +ve PAH's	μg/L	<0.1
Surrogate p-Terphenyl-d14	%	82

Metals in Waters - Acid extractable		
Our Reference		338230-98
Your Reference	UNITS	FR-101-SPT
Depth		-
Date Sampled		16/11/2023
Type of sample		Water
Date prepared	-	22/11/2023
Date analysed	-	22/11/2023
Arsenic - Total	mg/L	<0.05
Cadmium - Total	mg/L	<0.01
Chromium - Total	mg/L	<0.01
Copper - Total	mg/L	<0.01
Lead - Total	mg/L	<0.03
Mercury - Total	mg/L	<0.0005
Nickel - Total	mg/L	<0.02
Zinc - Total	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY C	ONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	338230-101
Date prepared	-			24/11/2023	125	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Date analysed	-			24/11/2023	125	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	<0.1	125	<0.1	<0.1	0	97	98
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	125	<0.1	<0.1	0	101	93
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	<0.1	125	<0.1	<0.1	0	101	102
6:2 FTS	μg/kg	0.1	Org-029	<0.1	125	<0.1	<0.1	0	99	100
8:2 FTS	μg/kg	0.2	Org-029	<0.2	125	<0.2	<0.2	0	97	99
Surrogate ¹³ C ₈ PFOS	%		Org-029	90	125	90	95	5	98	94
Surrogate 13 C ₂ PFOA	%		Org-029	100	125	95	103	8	98	100
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	83	125	78	76	3	71	88
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	91	125	83	77	8	69	95
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	88	125	83	77	8	71	94
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	101	125	101	91	10	79	109
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	99	125	102	99	3	79	120

QUALITY C	CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	338230-146
Date prepared	-			[NT]	139	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Date analysed	-			[NT]	139	24/11/2023	24/11/2023		27/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	[NT]	139	<0.1	<0.1	0	103	101
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	139	<0.1	<0.1	0	98	88
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	139	<0.1	<0.1	0	93	96
6:2 FTS	μg/kg	0.1	Org-029	[NT]	139	<0.1	<0.1	0	99	90
8:2 FTS	μg/kg	0.2	Org-029	[NT]	139	<0.2	<0.2	0	89	95
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	139	95	95	0	103	84
Surrogate 13 C ₂ PFOA	%		Org-029	[NT]	139	103	98	5	93	100
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	139	78	88	12	98	88
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	139	80	92	14	102	97
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	139	77	90	16	111	94

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	338230-146
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	139	83	93	11	115	126
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	139	78	91	15	130	119

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	338230-184
Date prepared	-			[NT]	163	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Date analysed	-			[NT]	163	27/11/2023	27/11/2023		27/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	[NT]	163	2.8	2.9	4	101	95
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	163	21	23	9	95	139
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	163	0.2	0.1	67	93	100
6:2 FTS	μg/kg	0.1	Org-029	[NT]	163	<0.1	0.2	67	90	96
8:2 FTS	μg/kg	0.2	Org-029	[NT]	163	<0.2	<0.2	0	99	97
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	163	102	108	6	101	100
Surrogate 13 C ₂ PFOA	%		Org-029	[NT]	163	100	103	3	103	101
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	163	88	93	6	98	100
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	163	94	97	3	106	102
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	163	102	111	8	108	98
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	163	121	131	8	120	104
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	163	100	123	21	134	104

QUALITY C	CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	338230-214
Date prepared	-			[NT]	182	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Date analysed	-			[NT]	182	27/11/2023	27/11/2023		27/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	[NT]	182	1.2	1.2	0	100	##
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	[NT]	182	<0.1	<0.1	0	95	84
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	182	<0.1	<0.1	0	95	96
6:2 FTS	μg/kg	0.1	Org-029	[NT]	182	<0.1	<0.1	0	85	103
8:2 FTS	μg/kg	0.2	Org-029	[NT]	182	<0.2	<0.2	0	99	108
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	182	98	100	2	99	102
Surrogate 13 C ₂ PFOA	%		Org-029	[NT]	182	101	95	6	103	101
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	182	102	99	3	104	93
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	182	109	107	2	114	98
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	182	106	110	4	112	97
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	182	108	105	3	125	100
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	182	115	103	11	129	114

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-255
Date prepared	-			[NT]	199	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Date analysed	-			[NT]	199	24/11/2023	24/11/2023		27/11/2023	24/11/2023
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	[NT]	199	1.9	1.9	0	100	102
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	199	0.3	0.2	40	104	101
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	[NT]	199	<0.1	<0.1	0	96	100
6:2 FTS	μg/kg	0.1	Org-029	[NT]	199	<0.1	<0.1	0	94	96
8:2 FTS	µg/kg	0.2	Org-029	[NT]	199	<0.2	<0.2	0	98	106
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	199	93	92	1	101	97
Surrogate 13 C ₂ PFOA	%		Org-029	[NT]	199	97	101	4	95	96
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	199	88	77	13	100	97
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	199	94	85	10	98	105
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	199	90	83	8	106	108

QUALITY C	CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-255
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	199	99	88	12	108	120
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	199	96	83	15	113	134

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	213	24/11/2023	24/11/2023			[NT]
Date analysed	-			[NT]	213	27/11/2023	27/11/2023			[NT]
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	[NT]	213	1.9	1.7	11		[NT]
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	213	44	49	11		[NT]
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	213	0.2	0.2	0		[NT]
6:2 FTS	μg/kg	0.1	Org-029	[NT]	213	<0.1	<0.1	0		[NT]
8:2 FTS	μg/kg	0.2	Org-029	[NT]	213	<0.2	<0.2	0		[NT]
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	213	99	100	1		[NT]
Surrogate ¹³ C ₂ PFOA	%		Org-029	[NT]	213	103	98	5		[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	213	98	103	5		[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	213	110	111	1		[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	213	118	121	3		[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	213	137	130	5		[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	213	146	140	4		[NT]

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	232	24/11/2023	24/11/2023			[NT]
Date analysed	-			[NT]	232	24/11/2023	24/11/2023			[NT]
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	[NT]	232	0.3	0.3	0		[NT]
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	[NT]	232	0.5	0.5	0		[NT]
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	232	<0.1	<0.1	0		[NT]
6:2 FTS	μg/kg	0.1	Org-029	[NT]	232	<0.1	<0.1	0		[NT]
8:2 FTS	μg/kg	0.2	Org-029	[NT]	232	<0.2	<0.2	0		[NT]
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	232	81	86	6		[NT]
Surrogate ¹³ C ₂ PFOA	%		Org-029	[NT]	232	99	98	1		[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	232	79	79	0		[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	232	91	86	6		[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	232	80	80	0		[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	232	92	91	1		[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	232	87	82	6		[NT]

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	253	24/11/2023	24/11/2023			[NT]
Date analysed	-			[NT]	253	27/11/2023	27/11/2023			[NT]
Perfluorohexanesulfonic acid - PFHxS	μg/kg	0.1	Org-029	[NT]	253	0.3	0.3	0		[NT]
Perfluorooctanesulfonic acid PFOS	μg/kg	0.1	Org-029	[NT]	253	0.3	0.3	0		[NT]
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	[NT]	253	0.1	<0.1	0		[NT]
6:2 FTS	μg/kg	0.1	Org-029	[NT]	253	<0.1	<0.1	0		[NT]
8:2 FTS	μg/kg	0.2	Org-029	[NT]	253	<0.2	<0.2	0		[NT]
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	253	100	99	1		[NT]
Surrogate ¹³ C ₂ PFOA	%		Org-029	[NT]	253	99	100	1		[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	253	100	98	2		[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	253	110	108	2		[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	253	125	116	7	[NT]	[NT]

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	253	140	140	0		[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	253	174	149	15		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date extracted	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			23/11/2023	1	23/11/2023	23/11/2023		23/11/2023	23/11/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	112	111
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	112	111
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	105	106
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	98	101
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	120	116
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	119	117
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	133	129
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	98	1	113	86	27	103	98

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date extracted	-			[NT]	14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	14	24/11/2023	24/11/2023		24/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	14	<25	<25	0	109	100
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	14	<25	<25	0	109	100
Benzene	mg/kg	0.2	Org-023	[NT]	14	<0.2	<0.2	0	108	97
Toluene	mg/kg	0.5	Org-023	[NT]	14	<0.5	<0.5	0	110	102
Ethylbenzene	mg/kg	1	Org-023	[NT]	14	<1	<1	0	103	94
m+p-xylene	mg/kg	2	Org-023	[NT]	14	<2	<2	0	112	103
o-Xylene	mg/kg	1	Org-023	[NT]	14	<1	<1	0	115	105
Naphthalene	mg/kg	1	Org-023	[NT]	14	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	14	91	105	14	103	96

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date extracted	-			[NT]	27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	27	24/11/2023	24/11/2023		27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	27	<25	<25	0	102	104
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	27	<25	<25	0	102	104
Benzene	mg/kg	0.2	Org-023	[NT]	27	<0.2	<0.2	0	97	100
Toluene	mg/kg	0.5	Org-023	[NT]	27	<0.5	<0.5	0	106	108
Ethylbenzene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	95	97
m+p-xylene	mg/kg	2	Org-023	[NT]	27	<2	<2	0	105	108
o-Xylene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	106	109
Naphthalene	mg/kg	1	Org-023	[NT]	27	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	27	105	105	0	96	100

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date extracted	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	38	27/11/2023	27/11/2023		27/11/2023	27/11/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	38	<25	<25	0	115	100
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	38	<25	<25	0	115	100
Benzene	mg/kg	0.2	Org-023	[NT]	38	<0.2	<0.2	0	109	93
Toluene	mg/kg	0.5	Org-023	[NT]	38	<0.5	<0.5	0	120	99
Ethylbenzene	mg/kg	1	Org-023	[NT]	38	<1	<1	0	108	96
m+p-xylene	mg/kg	2	Org-023	[NT]	38	<2	<2	0	120	107
o-Xylene	mg/kg	1	Org-023	[NT]	38	<1	<1	0	121	109
Naphthalene	mg/kg	1	Org-023	[NT]	38	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	38	104	107	3	104	89

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date extracted	-			[NT]	49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	49	27/11/2023	27/11/2023		24/11/2023	24/11/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	49	<25	<25	0	102	99
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	49	<25	<25	0	102	99
Benzene	mg/kg	0.2	Org-023	[NT]	49	<0.2	<0.2	0	101	98
Toluene	mg/kg	0.5	Org-023	[NT]	49	<0.5	<0.5	0	100	97
Ethylbenzene	mg/kg	1	Org-023	[NT]	49	<1	<1	0	100	96
m+p-xylene	mg/kg	2	Org-023	[NT]	49	<2	<2	0	105	101
o-Xylene	mg/kg	1	Org-023	[NT]	49	<1	<1	0	104	100
Naphthalene	mg/kg	1	Org-023	[NT]	49	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	49	107	102	5	96	96

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	63	22/11/2023	22/11/2023			
Date analysed	-			[NT]	63	27/11/2023	27/11/2023			
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	63	<25	<25	0		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	63	<25	<25	0		
Benzene	mg/kg	0.2	Org-023	[NT]	63	<0.2	<0.2	0		
Toluene	mg/kg	0.5	Org-023	[NT]	63	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-023	[NT]	63	<1	<1	0		
m+p-xylene	mg/kg	2	Org-023	[NT]	63	<2	<2	0		
o-Xylene	mg/kg	1	Org-023	[NT]	63	<1	<1	0		
Naphthalene	mg/kg	1	Org-023	[NT]	63	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	63	92	92	0		

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	72	22/11/2023	22/11/2023		[NT]	[NT]
Date analysed	-			[NT]	72	27/11/2023	27/11/2023		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	72	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	72	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	72	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	72	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	72	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	72	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	72	<1	<1	0	[NT]	[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	72	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	72	122	93	27	[NT]	[NT]

QUALITY CONT	TROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	82	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	82	27/11/2023	27/11/2023			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	82	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	82	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	82	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	82	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	82	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	82	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	82	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	82	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	82	93	94	1		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	92	22/11/2023	22/11/2023			
Date analysed	-			[NT]	92	24/11/2023	24/11/2023			
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	92	<25	<25	0		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	92	<25	<25	0		
Benzene	mg/kg	0.2	Org-023	[NT]	92	<0.2	<0.2	0		
Toluene	mg/kg	0.5	Org-023	[NT]	92	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-023	[NT]	92	<1	<1	0		
m+p-xylene	mg/kg	2	Org-023	[NT]	92	<2	<2	0		
o-Xylene	mg/kg	1	Org-023	[NT]	92	<1	<1	0		
Naphthalene	mg/kg	1	Org-023	[NT]	92	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	92	95	90	5		

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date extracted	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			23/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	118	106
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	109	105
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	100	114
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	118	106
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	120	<100	18	109	105
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	100	114
Surrogate o-Terphenyl	%		Org-020	78	1	93	84	10	99	93

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date extracted	-			[NT]	14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	14	22/11/2023	22/11/2023		22/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	14	<50	<50	0	113	106
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	14	<100	<100	0	103	103
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	14	<100	<100	0	100	99
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	14	<50	<50	0	113	106
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	14	<100	<100	0	103	103
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	14	<100	<100	0	100	99
Surrogate o-Terphenyl	%		Org-020	[NT]	14	81	81	0	94	92

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date extracted	-			[NT]	27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	27	22/11/2023	23/11/2023		23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	27	<50	<50	0	106	100
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	27	<100	<100	0	99	99
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	27	<100	<100	0	100	90
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	27	<50	<50	0	106	100
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	27	<100	<100	0	99	99
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	27	<100	<100	0	100	90
Surrogate o-Terphenyl	%		Org-020	[NT]	27	81	81	0	90	91

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date extracted	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	38	<50	<50	0	106	106
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	38	<100	<100	0	98	103
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	38	140	130	7	100	88
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	38	<50	<50	0	106	106
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	38	170	160	6	98	103
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	38	130	120	8	100	88
Surrogate o-Terphenyl	%		Org-020	[NT]	38	81	77	5	85	94

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date extracted	-			[NT]	49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	49	22/11/2023	22/11/2023		23/11/2023	23/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	49	<50	<50	0	110	105
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	49	150	150	0	104	96
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	49	220	220	0	86	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	49	<50	<50	0	110	105
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	49	290	290	0	104	96
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	49	180	180	0	86	#
Surrogate o-Terphenyl	%		Org-020	[NT]	49	84	84	0	87	85

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	63	22/11/2023	22/11/2023			
Date analysed	-			[NT]	63	23/11/2023	23/11/2023			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	63	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	63	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	63	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	63	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	63	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	63	130	130	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	63	78	81	4		

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	72	22/11/2023	22/11/2023		[NT]	
Date analysed	-			[NT]	72	23/11/2023	23/11/2023		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	72	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	72	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	72	120	130	8	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	72	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	72	140	160	13	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	72	130	130	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	72	81	84	4	[NT]	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	82	22/11/2023	22/11/2023		[NT]	
Date analysed	-			[NT]	82	23/11/2023	23/11/2023		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	82	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	82	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	82	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	82	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	82	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	82	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	82	77	79	3	[NT]	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	92	22/11/2023	22/11/2023			
Date analysed	-			[NT]	92	22/11/2023	22/11/2023			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	92	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	92	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	92	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	92	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	92	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	92	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	92	80	79	1		

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date extracted	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			24/11/2023	1	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	90
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	95
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	118	88
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	84
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.3	40	106	88
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	105	89
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	89	77
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.2	0.3	40	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.1	0.2	67	104	94
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	94	1	97	97	0	94	87

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date extracted	-			[NT]	14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	14	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	103	99
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	101	97
Fluorene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	124	116
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	108	100
Anthracene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	108	106
Pyrene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	107	99
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	91	91
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	14	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	14	<0.05	<0.05	0	102	106
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	14	99	97	2	97	96

QUAL	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date extracted	-			[NT]	27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	27	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	101	97
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	99	95
Fluorene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	120	116
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	102	98
Anthracene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	104	102
Pyrene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	107	90
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	95	87
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	27	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	27	<0.05	<0.05	0	110	104
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	27	102	97	5	96	89

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date extracted	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	38	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	107	97
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	115	97
Fluorene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	107	118
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	112	100
Anthracene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	38	0.2	0.2	0	118	98
Pyrene	mg/kg	0.1	Org-022/025	[NT]	38	0.2	0.3	40	115	103
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	38	0.2	0.2	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	38	0.1	0.2	67	87	89
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	38	0.3	0.4	29	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	38	0.2	0.2	0	108	98
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	38	0.1	0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	38	0.2	0.2	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	38	94	91	3	108	98

QUAL	ITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date extracted	-			[NT]	49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	49	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	101	102
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	101	98
Fluorene	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	109	108
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	49	0.8	0.7	13	104	102
Anthracene	mg/kg	0.1	Org-022/025	[NT]	49	0.2	0.2	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	49	5.0	2.6	63	104	118
Pyrene	mg/kg	0.1	Org-022/025	[NT]	49	5.0	2.8	56	105	124
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	49	2.5	1.4	56	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	49	2.2	1.4	44	91	102
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	49	4.3	2.8	42	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	49	2.4	1.7	34	108	114
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	49	1.2	1	18	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	49	0.3	0.2	40	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	49	1.8	1.4	25	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	49	98	95	3	94	88

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	63	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	63	24/11/2023	24/11/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	63	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	63	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	63	94	96	2		[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	72	22/11/2023	22/11/2023			
Date analysed	-			[NT]	72	24/11/2023	24/11/2023			
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		
Fluorene	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	72	0.1	0.2	67		
Anthracene	mg/kg	0.1	Org-022/025	[NT]	72	0.1	0.2	67		
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	72	0.4	0.7	55		
Pyrene	mg/kg	0.1	Org-022/025	[NT]	72	0.5	0.9	57		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	72	0.4	0.6	40		
Chrysene	mg/kg	0.1	Org-022/025	[NT]	72	0.3	0.5	50		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	72	0.8	1	22		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	72	0.5	0.70	33		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	72	0.4	0.5	22		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	0.1	0		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	72	0.6	0.8	29		
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	72	99	99	0		

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	82	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	82	24/11/2023	24/11/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	82	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	82	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	82	94	90	4		[NT]

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	92	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	92	24/11/2023	24/11/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	92	0.2	0.1	67		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	92	0.2	0.2	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	92	0.2	0.1	67		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	92	0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	92	0.2	0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	92	0.1	0.1	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	92	96	94	2		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date extracted	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			24/11/2023	1	24/11/2023	24/11/2023		24/11/2023	24/11/2023
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	94
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	92
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	83
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	71
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	87
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	94
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	126	103
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	103
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	80
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	120	100
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	101	1	87	92	6	96	90

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date extracted	-			[NT]	14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	14	24/11/2023	24/11/2023		24/11/2023	24/11/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	108	104
нсв	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	108	100
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	109	101
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	116	103
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	116	108
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	117	117
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	124	120
Endrin	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	98	113
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	108	108
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	140	120
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	14	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	14	109	110	1	97	93

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date extracted	-			[NT]	27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	27	24/11/2023	24/11/2023		24/11/2023	24/11/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	98	104
НСВ	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	98	98
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	77	81
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	111	105
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	108	102
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	27	0.4	0.4	0	115	111
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	118	118
Endrin	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	100	98
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	102	100
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	27	0.4	0.3	29	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	80	100
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	27	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	27	97	95	2	96	93

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date extracted	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	38	24/11/2023	24/11/2023		24/11/2023	24/11/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	110	102
НСВ	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	114	98
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	109	77
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	93	103
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	110	104
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	123	109
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	130	118
Endrin	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	113	98
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	106	102
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	140	80
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	38	93	94	1	60	93

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date extracted	-			[NT]	49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	49	24/11/2023	24/11/2023		24/11/2023	24/11/2023
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	112	106
НСВ	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	110	104
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	95	94
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	113	102
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	114	108
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	115	106
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	130	120
Endrin	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	115	102
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	104	97
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	100	91
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	49	96	95	1	97	91

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	63	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	63	24/11/2023	24/11/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
HCB	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	63	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	63	92	94	2		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	72	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	72	24/11/2023	24/11/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	72	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	72	96	96	0		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	82	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	82	24/11/2023	24/11/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
HCB	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	82	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	82	91	92	1		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	92	22/11/2023	22/11/2023			[NT]
Date analysed	-			[NT]	92	24/11/2023	24/11/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
HCB	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	92	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	92	94	96	2		[NT]

QUALITY CONTI	ROL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date extracted	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			24/11/2023	1	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	119	103
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	87
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	67
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	73
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	86
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	66
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	70
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	101	1	87	92	6	96	90

QUALITY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date extracted	-				14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-				14	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Dichlorvos	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	109	113
Mevinphos	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	106	102
Fenitrothion	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	103	109
Malathion	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	105	106
Chlorpyriphos	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	108	102
Fenthion	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	105	107
Bromophos-ethyl	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	92	102
Phosalone	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		14	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		14	109	110	1	97	93

QUALITY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date extracted	-				27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-				27	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Dichlorvos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	119	117
Mevinphos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	99	95
Fenitrothion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	111	113
Malathion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	103	108
Chlorpyriphos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	106	104
Fenthion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	105	109
Bromophos-ethyl	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	102	102
Phosalone	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		27	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		27	97	95	2	96	93

QUALITY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date extracted	-				38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-				38	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Dichlorvos	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	131	109
Mevinphos	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	112	95
Fenitrothion	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	115	103
Malathion	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	110	101
Chlorpyriphos	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	112	100
Fenthion	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	113	107
Bromophos-ethyl	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	92	94
Phosalone	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		38	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		38	93	94	1	60	93

QUALITY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date extracted	-				49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-				49	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Dichlorvos	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	135	122
Mevinphos	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	104	96
Fenitrothion	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	90	120
Malathion	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	126	120
Chlorpyriphos	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	112	102
Fenthion	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	126	120
Bromophos-ethyl	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	117	104
Phosalone	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		49	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		49	96	95	1	97	91

QUALITY CONT	ROL: Organopl	hosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				63	22/11/2023	22/11/2023			[NT]
Date analysed	-				63	24/11/2023	24/11/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		63	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		63	92	94	2		[NT]

QUALITY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				72	22/11/2023	22/11/2023			[NT]
Date analysed	-				72	24/11/2023	24/11/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		72	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		72	96	96	0		[NT]

QUALITY CONTI	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				82	22/11/2023	22/11/2023			[NT]
Date analysed	-				82	24/11/2023	24/11/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		82	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		82	91	92	1		[NT]

QUALITY CONTI	ROL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				92	22/11/2023	22/11/2023			[NT]
Date analysed	-				92	24/11/2023	24/11/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		92	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		92	94	96	2		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date extracted	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			24/11/2023	1	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	119	100
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	97	1	87	89	2	97	85

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date extracted	-				14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-				14	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Aroclor 1016	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	120	100
Aroclor 1260	mg/kg	0.1	Org-021/022/025		14	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025		14	96	91	5	97	92

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date extracted	-				27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-				27	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Aroclor 1016	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	112	100
Aroclor 1260	mg/kg	0.1	Org-021/022/025		27	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	27	98	95	3	97	93

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date extracted	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	38	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Aroclor 1016	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	136	100
Aroclor 1260	mg/kg	0.1	Org-021/022/025	[NT]	38	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	38	94	94	0	90	95

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date extracted	-			[NT]	49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	49	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Aroclor 1016	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	126	110
Aroclor 1260	mg/kg	0.1	Org-021/022/025	[NT]	49	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	49	92	96	4	95	93

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				63	22/11/2023	22/11/2023			[NT]
Date analysed	-				63	24/11/2023	24/11/2023			[NT]
Aroclor 1016	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Aroclor 1260	mg/kg	0.1	Org-021/022/025		63	<0.1	<0.1	0		[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025		63	93	95	2		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	72	22/11/2023	22/11/2023		[NT]	[NT]
Date analysed	-			[NT]	72	24/11/2023	24/11/2023		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021/022/025	[NT]	72	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	72	94	96	2	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	82	22/11/2023	22/11/2023		[NT]	[NT]
Date analysed	-			[NT]	82	24/11/2023	24/11/2023		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021/022/025	[NT]	82	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	82	94	101	7	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				92	22/11/2023	22/11/2023			
Date analysed	-				92	24/11/2023	24/11/2023			
Aroclor 1016	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021/022/025		92	<0.1	<0.1	0		
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025		92	93	94	1		

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	338230-3
Date prepared	-			22/11/2023	1	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			24/11/2023	1	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Arsenic	mg/kg	4	Metals-020	<4	1	<4	4	0	100	92
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	98	89
Chromium	mg/kg	1	Metals-020	<1	1	13	21	47	107	94
Copper	mg/kg	1	Metals-020	<1	1	20	18	11	99	103
Lead	mg/kg	1	Metals-020	<1	1	120	120	0	109	92
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	111	127
Nickel	mg/kg	1	Metals-020	<1	1	17	17	0	98	91
Zinc	mg/kg	1	Metals-020	<1	1	48	48	0	100	87

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	338230-28
Date prepared	-			[NT]	14	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	14	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Arsenic	mg/kg	4	Metals-020	[NT]	14	<4	<4	0	101	93
Cadmium	mg/kg	0.4	Metals-020	[NT]	14	<0.4	<0.4	0	98	92
Chromium	mg/kg	1	Metals-020	[NT]	14	10	9	11	105	98
Copper	mg/kg	1	Metals-020	[NT]	14	2	3	40	100	101
Lead	mg/kg	1	Metals-020	[NT]	14	15	11	31	111	96
Mercury	mg/kg	0.1	Metals-021	[NT]	14	<0.1	<0.1	0	128	125
Nickel	mg/kg	1	Metals-020	[NT]	14	2	2	0	99	93
Zinc	mg/kg	1	Metals-020	[NT]	14	2	3	40	99	89

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	338230-50
Date prepared	-			[NT]	27	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	27	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Arsenic	mg/kg	4	Metals-020	[NT]	27	9	9	0	106	94
Cadmium	mg/kg	0.4	Metals-020	[NT]	27	0.5	0.5	0	102	93
Chromium	mg/kg	1	Metals-020	[NT]	27	25	25	0	112	96
Copper	mg/kg	1	Metals-020	[NT]	27	8	9	12	106	103
Lead	mg/kg	1	Metals-020	[NT]	27	42	40	5	114	95
Mercury	mg/kg	0.1	Metals-021	[NT]	27	0.2	<0.1	67	128	121
Nickel	mg/kg	1	Metals-020	[NT]	27	3	3	0	103	95
Zinc	mg/kg	1	Metals-020	[NT]	27	20	22	10	105	91

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	338230-73
Date prepared	-			[NT]	38	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	38	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Arsenic	mg/kg	4	Metals-020	[NT]	38	5	4	22	116	97
Cadmium	mg/kg	0.4	Metals-020	[NT]	38	0.6	0.7	15	109	96
Chromium	mg/kg	1	Metals-020	[NT]	38	18	19	5	126	103
Copper	mg/kg	1	Metals-020	[NT]	38	28	33	16	115	104
Lead	mg/kg	1	Metals-020	[NT]	38	50	54	8	127	102
Mercury	mg/kg	0.1	Metals-021	[NT]	38	<0.1	<0.1	0	125	119
Nickel	mg/kg	1	Metals-020	[NT]	38	12	13	8	112	97
Zinc	mg/kg	1	Metals-020	[NT]	38	70	79	12	114	91

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	338230-93
Date prepared	-			[NT]	49	22/11/2023	22/11/2023		22/11/2023	22/11/2023
Date analysed	-			[NT]	49	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Arsenic	mg/kg	4	Metals-020	[NT]	49	<4	<4	0	112	105
Cadmium	mg/kg	0.4	Metals-020	[NT]	49	1	1	0	109	97
Chromium	mg/kg	1	Metals-020	[NT]	49	16	18	12	114	104
Copper	mg/kg	1	Metals-020	[NT]	49	46	35	27	110	114
Lead	mg/kg	1	Metals-020	[NT]	49	77	86	11	116	94
Mercury	mg/kg	0.1	Metals-021	[NT]	49	<0.1	<0.1	0	130	119
Nickel	mg/kg	1	Metals-020	[NT]	49	16	16	0	110	100
Zinc	mg/kg	1	Metals-020	[NT]	49	89	86	3	108	89

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	63	22/11/2023	22/11/2023			
Date analysed	-			[NT]	63	24/11/2023	24/11/2023			
Arsenic	mg/kg	4	Metals-020	[NT]	63	<4	<4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	63	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	63	16	13	21		
Copper	mg/kg	1	Metals-020	[NT]	63	67	66	2		
Lead	mg/kg	1	Metals-020	[NT]	63	2	3	40		
Mercury	mg/kg	0.1	Metals-021	[NT]	63	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	63	100	92	8		
Zinc	mg/kg	1	Metals-020	[NT]	63	43	40	7		

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	72	22/11/2023	22/11/2023				
Date analysed	-			[NT]	72	24/11/2023	24/11/2023				
Arsenic	mg/kg	4	Metals-020	[NT]	72	8	5	46			
Cadmium	mg/kg	0.4	Metals-020	[NT]	72	<0.4	<0.4	0			
Chromium	mg/kg	1	Metals-020	[NT]	72	34	20	52			
Copper	mg/kg	1	Metals-020	[NT]	72	29	25	15			
Lead	mg/kg	1	Metals-020	[NT]	72	35	38	8			
Mercury	mg/kg	0.1	Metals-021	[NT]	72	<0.1	<0.1	0			
Nickel	mg/kg	1	Metals-020	[NT]	72	13	12	8			
Zinc	mg/kg	1	Metals-020	[NT]	72	91	50	58			

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	82	22/11/2023	22/11/2023		[NT]	
Date analysed	-			[NT]	82	24/11/2023	24/11/2023		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	82	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	82	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	82	9	9	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	82	8	6	29	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	82	18	13	32	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	82	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	82	5	8	46	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	82	24	18	29	[NT]	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	92	22/11/2023	22/11/2023		[NT]	
Date analysed	-			[NT]	92	24/11/2023	24/11/2023		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	92	5	7	33	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	92	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	92	16	18	12	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	92	12	9	29	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	92	22	22	0	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	92	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	92	6	5	18	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	92	17	16	6	[NT]	[NT]

QUALITY C	ONTROL: P	QUALITY CONTROL: PFAS in Waters Short							Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
Date analysed	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	115		
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	109		
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	105		
6:2 FTS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	93		
8:2 FTS	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	110		
Surrogate ¹³ C ₈ PFOS	%		Org-029	107	[NT]		[NT]	[NT]	100		
Surrogate ¹³ C ₂ PFOA	%		Org-029	97	[NT]		[NT]	[NT]	99		
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	96	[NT]		[NT]	[NT]	94		
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	94	[NT]		[NT]	[NT]	100		
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	119	[NT]		[NT]	[NT]	122		
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	138	[NT]		[NT]	[NT]	165		
Extracted ISTD 13 C ₂ 8:2FTS	%		Org-029	155	[NT]		[NT]	[NT]	175		

QUALITY CONTR	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water							Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			24/11/2023	[NT]		[NT]	[NT]	24/11/2023	
Date analysed	-			27/11/2023	[NT]		[NT]	[NT]	27/11/2023	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	118	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	118	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	117	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	120	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	117	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	119	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	117	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	112	[NT]		[NT]	[NT]	106	
Surrogate Toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	103	
Surrogate 4-Bromofluorobenzene	%		Org-023	94	[NT]		[NT]	[NT]	106	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			24/11/2023	[NT]		[NT]	[NT]	24/11/2023	
Date analysed	-			25/11/2023	[NT]		[NT]	[NT]	25/11/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	86	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	97	[NT]		[NT]	[NT]	89	

QUAL	ITY CONTRO	L: PAHs ir	n Water			Du	plicate		Spike Rec	overy <u></u> %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			24/11/2023	[NT]		[NT]	[NT]	24/11/2023	
Date analysed	-			27/11/2023	[NT]		[NT]	[NT]	27/11/2023	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	117	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	100	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	113	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	132	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	97	[NT]		[NT]	[NT]	107	

QUALITY CONTRO	OL: Metals ir	n Waters -	- Acid extractable			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			22/11/2023	[NT]		[NT]	[NT]	22/11/2023	
Date analysed	-			22/11/2023	[NT]		[NT]	[NT]	22/11/2023	
Arsenic - Total	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	117	
Cadmium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	111	
Chromium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	108	
Copper - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	108	
Lead - Total	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	110	
Mercury - Total	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	85	
Nickel - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	110	
Zinc - Total	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	116	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 338230

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 338230 Page | 167 of 168 R00

Report Comments

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 338230-93ms have caused interference.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of samples 338230-49 and 338230-72

TRH Water(C10-C40) NEPM - The positive result in the rinsate sample is due to a single peak with no hydrocarbon profile that is consistent with the use of plastic containers.

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 338230-1 for Cr. Therefore a triplicate result has been issued as laboratory sample number 338230-258.
- The laboratory RPD acceptance criteria has been exceeded for 338230-72 for Cr and Zn. Therefore a triplicate result has been issued as laboratory sample number 338230-259.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 338230-9, 11, 20, 43, 70 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 338230-214 have caused interference.

Envirolab Reference: 338230 Page | 168 of 168
Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Brendan Page

Sample Login Details	
Your reference	E35614P2, Bankstown
Envirolab Reference	338230
Date Sample Received	20/11/2023
Date Instructions Received	20/11/2023
Date Results Expected to be Reported	29/11/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	256 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 hlev St Chatswood NSW 2067

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH101-0-0.1		✓	✓	✓	✓	✓	✓	✓	✓						
BH101-0.2-0.3															✓
BH101-0.7-1.0		✓	✓	✓	✓	✓	✓	✓	✓						
BH101-1.3-1.5		✓	✓	✓				✓							
BH102-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH102-0.5-0.7		✓	✓	✓	✓	✓	✓	✓							
BH102-0.9-1.0															✓
BH102-1.7-1.95		✓	✓	✓				✓							
BH103-0.05-0.15		✓	✓	✓	✓	✓	✓	✓	✓						
BH103-0.2-0.4															✓
BH103-0.4-0.6		✓	✓	✓	✓	✓	✓	✓	✓						
BH103-0.7-1.0		✓	✓	✓				✓							
BH104-0-0.1		✓	✓	✓	✓	✓	✓	✓	✓						
BH104-0.2-0.3		✓	✓	✓	✓	✓	✓	✓	✓						
BH104-0.7-1.0															✓
BH104-1.7-2.0		✓	✓	✓				✓							
BH105-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH105-0.4-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH105-0.7-0.95		✓	✓	✓				✓							
BH106-0.1-0.3		✓	✓	✓	✓	✓	✓	✓	✓						
BH106-0.4-0.6		✓	✓	✓	✓	✓	✓	✓	✓						
BH106-1.3-1.5		✓	✓	✓				✓							
BH107-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH107-0.5-0.7		✓	✓	✓	✓	✓	✓	✓							
BH107-0.8-1.0															✓
BH107-1.5-1.7		✓	✓	✓				✓							
BH108-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH108-0.5-0.7		✓	✓	✓	✓	✓	✓	✓							
BH108-0.8-1.0		✓	✓	✓				✓							
BH108-1.5-1.6															✓
BH109-0-0.15		✓	✓	✓	✓	✓	✓	✓	✓						
BH109-0.2-0.5															✓

Envirolab Services Pty Ltd ABN 37 112 535 645 lev St Chatswood NSW 2067

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH109-0.5-0.8		✓	✓	✓	✓	✓	✓	✓	✓						
BH109-1.3-1.5		✓	✓	✓				✓							
BH110-0-0.1		✓	✓	✓	✓	✓	✓	✓	✓						
BH110-0.5-0.8		✓	✓	✓	✓	✓	✓	✓	✓						
BH110-1.3-1.5		✓	✓	✓				✓							
BH111-0-0.1		✓	✓	✓	✓	✓	✓	✓	✓						
BH111-0.2-0.5		✓	✓	✓	✓	✓	✓	✓							
BH111-0.5-0.7		✓	✓	✓				✓							
BH111-1.3-1.5															✓
BH112-0-0.1		✓	✓	✓	✓	✓	✓	✓	✓						
BH112-0.4-0.7		✓	✓	✓	✓	✓	✓	✓	✓						
BH112-1.2-1.5		✓	✓	✓				✓							
BH113-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH113-0.5-0.7		✓	✓	✓	✓	✓	✓	✓							
BH113-0.8-1.0															✓
BH113-1.5-1.7		✓	✓	✓				✓							
BH114-0-0.1		✓	✓	✓	✓	✓	✓	✓	✓						
BH114-0.3-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH114-0.8-0.95															✓
BH114-1.5-1.7															✓
BH114-1.8-2.0		✓	✓	✓				✓							
BH115-0.08-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH115-0.3-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH115-0.8-1.0		✓	✓	✓				✓							
BH116-0.06-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH116-0.2-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH116-0.7-1.0		✓	✓	✓				✓							
BH117-0.06-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH117-0.4-0.7		✓	✓	✓	✓	✓	✓	✓	✓						
BH117-1.3-1.5		✓	✓	✓				✓							
BH118-0.06-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH118-0.2-0.4		✓	✓	✓	✓	✓	✓	✓	✓						

Envirolab Services Pty Ltd ABN 37 112 535 645 aley St Chatswood NSW 2067

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH118-0.7-1.0		✓	✓	✓				✓							
BH119-0.07-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH119-0.2-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH119-0.7-1.0		✓	✓	✓				✓							
BH120-0.1-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH120-0.2-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH120-0.7-1.0		✓	✓	✓				✓							
BH121-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH121-0.4-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH121-0.7-0.95		✓	✓	✓				✓							
BH122-0.01-0.16		✓	✓	✓	✓	✓	✓	✓	✓						
BH122-0.2-0.35		✓	✓	✓	✓	✓	✓	✓	✓						
BH122-0.7-1.0		✓	✓	✓				✓							
BH123-0.08-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH123-0.2-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH123-0.7-1.0		✓	✓	✓				✓							
BH124-0.05-0.15		✓	✓	✓	✓	✓	✓	✓	✓						
BH124-0.2-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH124-0.6-1.0		✓	✓	✓				✓							
BH125-0.12-0.3		✓	✓	✓	✓	✓	✓	✓	✓						
BH125-0.3-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH125-0.7-1.0		✓	✓	✓				✓							
BH126-0-0.2		✓	✓	✓	✓	✓	✓	✓	✓						
BH126-0.4-0.5		✓	✓	✓	✓	✓	✓	✓	✓						
BH126-0.7-0.95		✓	✓	✓				✓							
SDUP107		✓	✓	✓				✓							
SDUP108		✓	✓	✓				✓							
SDUP109		✓	✓	✓	✓	✓	✓	✓							
SDUP110		✓	✓	✓	✓	✓	✓	✓							
SDUP111		✓	✓	✓	✓	✓	✓	✓							
SDUP112		✓	✓	✓	✓	√	✓	✓							
TB-S101		✓	✓	✓				✓							

Envirolab Services Pty Ltd ABN 37 112 535 645 ley St Chatswood NSW 2067

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
TS-S101		✓													
FR-101-SPT										✓	✓	✓	✓	✓	
BH101-0-0.1	✓														
BH101-0.2-0.3															✓
BH101-0.7-1	✓														
BH101-1.3-1.5	✓														
BH101-1.9-2															✓
BH102-0-0.2	✓														
BH102-0.5-0.7															✓
BH102-0.9-1	✓														
BH102-1.7-1.95	✓														
BH102-2.4-2.5															✓
BH102-3.3-3.45															✓
BH102-3.9-4															✓
BH102-4.8-4.95															✓
BH102-5.4-5.5															✓
BH102-6.3-6.45															✓
BH102-6.9-7															✓
BH103-0.05-0.15	✓														
BH103-0.2-0.4	✓														
BH103-0.4-0.6															✓
BH103-0.7-1	✓														
BH103-1.9-2															✓
BH104-0-0.1	✓														
BH104-0.2-0.3	✓														
BH104-0.7-1															✓
BH104-1.7-2	✓														
BH105-0-0.2	✓														
BH105-0.4-0.5	✓														
BH105-0.7-0.95	✓														
BH105-1.7-1.95															✓
BH105-2.5-2.6															✓

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH105-3.8-3.95															✓
BH105-4.4-4.5															✓
BH105-4.8-4.95															✓
BH106-0.1-0.3	✓														
BH106-0.4-0.6	✓														
BH106-1.3-1.5	✓														
BH106-1.9-2															✓
BH107-0-0.2	✓														
BH107-0.5-0.7	✓														
BH107-0.8-1															✓
BH107-1.5-1.7	✓														
BH107-2.5-2.6															✓
BH107-3.3-3.45															✓
BH107-3.9-4															✓
BH107-4.8-4.95															✓
BH107-5.4-5.5															✓
BH107-6.3-6.45															✓
BH108-0-0.2	✓														
BH108-0.5-0.7															✓
BH108-0.8-0.9	✓														
BH108 -1.5-1.6															✓
BH108-1.9-2	✓														
BH108-3-3.1															✓
BH108-3.9-4															✓
BH108-4.8-4.95															✓
BH109-0-0.15	✓														
BH109-0.2-0.5	✓														
BH109-0.5-0.8															✓
BH109-1.3-1.5	✓														
BH109-1.9-2															✓
BH110-0-0.1	✓														
BH110-0.5-0.8	✓														

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH110-1.3-1.5	✓														
BH110-1.9-2															✓
BH111-0-0.1	✓														
BH111-0.2-0.5	✓														
BH111-0.5-0.7															✓
BH111-1.3-1.5	✓														
BH111-1.9-2															✓
BH112-0-0.1	✓														
BH112-0.4-0.7	✓														
BH112-1.2-1.5	✓														
BH112-1.9-2															✓
BH113-0-0.2	✓														
BH113-0.5-0.7	✓														
BH113-0.8-1															✓
BH113-1.5-1.7															✓
BH113-1.9-2	✓														
BH113-3-3.2															✓
BH113-3.9-4															✓
BH113-4.8-4.95															✓
BH114-0-0.1	✓														
BH114-0.3-0.5															✓
BH114-0.8-0.95	✓														
BH114-1.5-1.7															✓
BH114-1.8-2	✓														
BH114-3-3.2															✓
BH114-4-4.2															✓
BH114-4.8-4.95															✓
BH114-5.7-5.8															✓
BH115-0.08-0.2	✓														
BH115-0.3-0.5	✓														
BH115-0.8-1															✓
BH115-1.9-2	✓														

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH116-0.06-0.2	✓														
BH116-0.2-0.5	✓														
BH116-0.7-1	✓														
BH116-1.9-2															✓
BH117-0.06-0.2	✓														
BH117-0.4-0.7	✓														
BH117 -1.3-1.5	✓														
BH117-1.9-2															✓
BH118-0.06-0.2	✓														
BH118-0.2-0.4	✓														
BH118-0.7-0.1	✓														
BH118-1.9-2															✓
BH119-0.07-0.2	✓														
BH119-0.2-0.5	✓														
BH119-0.7-1															✓
BH119-1.9-2	✓														
BH120 -0.1-0.2	✓														
BH120-0.2-0.5	✓														
BH120-0.7-1	✓														
BH120-2-2.1															✓
BH121-0-0.2	✓														
BH121-0.4-0.5	✓														
BH121-0.7-0.95															✓
BH121-1.7-1.95	✓														
BH121-2.5-2.6															✓
BH121-3.3-3.45															✓
BH121-3.9-4															✓
BH121-4.8-4.95															✓
BH121-5.4-5.5															✓
BH121-6.3-6.45															✓
BH121 -6.9-7															✓
BH122-0.01-0.16	✓														

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
BH122-0.2-0.35	✓														
BH122-0.7-1	✓														
BH122-1.9-2															✓
BH123-0.08-0.2	✓														
BH123-0.2-0.5	✓														
BH123-0.7-1	✓														
BH124 -0.05-0.15	✓														
BH124-0.2-0.5	✓														
BH124-0.6-1															✓
BH124-1.9-2	✓														
BH125-0.12-0.3	✓														
BH125-0.35	✓														
BH125-0.7-1	✓														
BH125-1.9-2															✓
BH126-0-0.2	✓														
BH126-0.4-0.5	✓														
BH126-0.7-0.95	✓														
BH126-1.4-1.5															✓
BH126-1.8-1.95															✓
BH126-2.5-2.6															✓
BH126-3.3-3.45															✓
BH126-3.9-4															✓
BH126 -4.8-4.95															✓
BH126-5.5-5.6															✓
BH126-6.3-6.45															✓
BH126-6.9-7															✓
SDUP105	✓														
SDUP106	✓														
SDUP107	✓														
SDUP108															✓
SDUP112	✓														
SDUP113															

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	PFAS in Soils Short	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	Metals in Waters -Acid extractable	On Hold
TB-S101	✓														

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

FROM: TO: E35614P2 **ENVIROLAB SERVICES PTY LTD** JKE Job 12 ASHLEY STREET Number: **K**Environments **CHATSWOOD NSW 2067** P: (02) 99106200 **Date Results STANDARD** REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 1 of 12 Attention: Aileen Page: Attention: **Brendan Page** bpage@jkenvironments.com.au Sample Preserved in Esky on Ice Location: Bankstown **Tests Required** AD/LR Sampler: Sample Description Combo 6 Combo 3 detection) Combo 6a Container Combo GaNEPM Asbestos Sample BTEX Lab Sample **Date Sampled** Depth (m) PID Ref: Number Х G. A 0.6 F: Silty Clay BH101 15/11/2023 0-0.1 2 0.8 G, A F: Silty Clay BH101 15/11/2023 0.2-0.3 3 G, A 4.2 F: Silty Clay X 15/11/2023 BH101 0.7-1.0 G, A 4 Silty Clay X 4-BH101 1.3-1.5 15/11/2023 G. A 1.7 F: Silty Clay X BH102 0-0.2 16/11/2023 G, A 1.2 Silty Clay X BH102 0.5-0.7 16/11/2023 G, A 9.6 Silty Clay BH102 16/11/2023 0.9-1.0 9 1.7-1.95 G. A 9.6 Silty Clay X BH102 16/11/2023 1.6 X 16/11/2023 BH103 0.05-0.15 G, A F: Gravelly Sand 2.5 16/11/2023 10 BH103 0.2-0.4 G, A F: Clayey Sand G, A 6.3 F: Silty Clay X 1 **BH103** 0.4-0.6 16/11/2023 12 вн103 3.4 Silty Clay X 16/11/2023 0.7-1.0 G, A 1.9 G, A F: Silty Clay X 12 15/11/2023 BH104 0-0.1 14 Χ G, A 3.5 F: Silty Clay BH104 0.2-0.3 15/11/2023 15 G, A 0.8 Silty Clay BH104 0.7-1.0 15/11/2023 16 G O Silty Clay X BH104 15/11/2023 1.7-2.0 17 G, A 9.5 F: Silty Clay X 17/11/2023 BH105 0-0.2 Χ 18 G, A 14.8 F: Silty Clay 17/11/2023 BH105 0.4-0.5 19 G. A 12.9 Silty Clay X 17/11/2023 BH105 0.7-0.95 BUNIKOLAB 12 Ashley St 20 19°A 3.5 F: Silty Clay X BH106 0.1-0.3 **\$\$**16/11/2023 Chatswood NSW 2067 Ph: (02) 9910 6200 21 80.9 Χ G, A F: Silty Clay 16/11/2023 BH106 0.4-0.6 G, A 1.8 Silty Clay X BH106 16/11/2023 1.3-1.5 20/ 23 ime Received: (430) 10.6 X BH107 G, A F: Silty Clay 16/11/2023 0-0.2 eceived By 7 2 . Temp Cool Ambie 24 5.9 Silty Clay X G, A 16/11/2023 BH107 0.5-0.7 Cooling: Ice/cepack G, A 13.8 Silty Clay 16/11/2023 BH107 0.8-1.0 Security: Intact/Broken/None Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar Batch quote #23SY512_BM10 A - Ziplock Asbestos Bag P - Plastic Bag Date: 20.11.23 Relinquished By: BP Time: 1pm Received By: Date: GZ couce

				SAM	PLE A	ND CHAIN OF (CUSTO	YDC	FOF	IM								
<u>TO:</u> ENVIROLAB SER 12 ASHLEY STRE		PTY LTD		JKE Job Number:		E35614P2	-	,		-	FROM		K	_				_
CHATSWOOD N P: (02) 9910620 F: (02) 9910620	SW 201	67		Date Res	ults	STANDARD					REAR (OF 115 UARIE	WICK PARK		AD / 2113	3		nts
Attention: Ailee	n			Page:		·2 of 12					P: 02-9 Attent			E e@jke	Brenda	-9888 an Pag ament:	ge .	.au
Location:	Banks	town								Sar	mple Pr	eserve	d in E	sky or	lce			
Sampler:	AD/LR	<u> </u>									Te	ests R	equire	d				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6aNEPM	Combo 6	Combo 6a	Combo 3	Asbestos (detection)	втех			at			
16/11/2023	26	ВН107	1.5-1.7	G, A	22.4	Silty Clay				Х								
16/11/2023	27	BH108	0-0.2	G, A	17.8	F: Silty Clay	Х			<u> </u>			<u> </u>					
16/11/2023	28	BH108	0.5-0.7	G, A	12.3	Silty Clay		X								L.		
16/11/2023	29	BH108	0.8-1.0	G, A	12.2	Silty Clay				Х				ļ		<u> </u>		
16/11/2023	30	вн108	1.5-1.6	G, A	9.5	Silty Clay				<u> </u>								
15/11/2023	31	вн109	0-0.15	G, A	0.9	F: Silty Clay	Х											
15/11/2023	32	BH109	0.2-0.5	G, A	1.1	F: Silty Clay												
15/11/2023	33	вн109	0.5-0.8	G, A	3.9	F: Silty Clay	Х											
15/11/2023	34	ВН109	1.3-1.5	G, A	3.8	Silty Clay				Х								
15/11/2023	35	BH110	0-0.1	G, A	1.5	F: Silty Clay	X					ı						
15/11/2023	36	BH110	0.5-0.8	G, A	3.9	F: Silty Clay	Х											
15/11/2023	37	BH110	1.3-1.5	G, A	4.4	Silty Clay				Х								
15/11/2023	38	BH111	0-0.1 ,	G, A	3.4	F: Silty Clay	X											,
15/11/2023	39	BH111	0.2-0.5	G, 🖍	0.5	F: Silty Clay	Х										ĺ	
15/11/2023	40	BH111	0.5-0.7	G, A	2.9	Silty Clay				Х								
15/11/2023	4)	BH111	1.3-1.5	G	0.2	Silty Clay												
15/11/2023	42	BH112	0-0.1	G, A	3.4	F: Silty Clay	Х											
15/11/2023	4	BH112	0.4-0.7	G, A	4.8	F: Silty Clay	Х											
15/11/2023	44	BH112	1.2-1.5	G, A	6.3	Silty Clay		_		Х				-				
16/11/2023	45	BH113	0-0.2	G, A	43	F: Silty Clay	X											
16/11/2023	46	BH113	0.5-0.7	G, A	14	Silty Clay		Х										
16/11/2023	47	BH113	0.8-1.0	G, A	8.2	Silty Clay												
16/11/2023	48	BH113	1.5-1.7	G, A	13.1	Silty Clay				Χ								
16/11/2023	- 1	BH114	0-0.1	G, A	14.7	F: Silty Clay	Х											
16/11/2023	50	BH114	0.3-0.5	G, A	51.3	F: Silty Clay	Х											
Remarks (comm			ts required): quote #23SY!	512_BM10			Samp G - 25 A - Zip P - Pla Time:	Omg (plock a astic B	3lass . Asbes	Jar	Receiv	ed Rv				Date:		
quiunica ay							1	-h:::			cceiv	Lu Dy.	,			Jaces		

		ſ		SAM	PLE A	ND CHAIN OF C	<u>USTC</u>	DDY	FOF	RM	_							
TO: ENVIROLAB SE 12 ASHLEY STR CHATSWOOD I	EET			JKE Job Number:	:	E35614P2					FROM:		KE	- Env	virc	กา	ner	nts
P: (02) 9910620 F: (02) 9910620	00			Date Res		STANDARD					REAR O	UARIE	PARI		V 21 13	3 -9888	5001	
Attention: Aile	en			Page:		3 of 12	•				Attenti				Brend	an Pag		<u>.au</u>
Location:	Banks	town								Sar	nple Pre	eserve	ed in E	Esky o	n Ice			
Sampler:	AD/LR	l .			, — —		ļ,				Te	sts R	equire	ed				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6aNEPM	Combo 6	Combo 6a	Combo 3	Asbestos (detection)	ВТЕХ						
16/11/2023	51	BH114	0.8-0.95	G, A	4.5	F: Silty Clay										,		
16/11/2023	52	BH114	1.5-1.7	G, A	32.9	Silty Clay	ļ l									<u> </u>		
16/11/2023	<i>5</i> 3	BH114	1.8-2.0	G, A	96.1	Silty Clay				Х								
16/11/2023	54	BH115	0.08-0.2	G, A	4.3	F: Gravelly Sand	X											
16/11/2023	SS	BH115	0.3-0.5	G, A	2	F: Clayey Sand	Х										İ	
16/11/2023	56	BH115	0.8-1.0	G, A	6.2	Silty Clay				Х								
16/11/2023	57	BH116	0.06-0.2	G, A	1.1	F: Gravelly Sand	Х											
16/11/2023	58	BH116	0.2-0.5	G, A	1.9	F: Clayey Sand	Х											
16/11/2023	59	BH116	0.7-1.0	G, A	4.3	Silty Clay				Х								
16/11/2023	60	BH117	0.06-0.2	G, A	1.1	F: Gravelly Sand	Х		i									
16/11/2023	61	BH117	0.4-0.7	G, A	1.9	F: Clayey Sand	Х											
16/11/2023	62	BH117	1.3-1.5	G, A	2.6	Silty Clay				Х								
17/11/2023	63	₹ BH118	0.06-0.2	G, A	0.4	F: Gravelly Sand	Х											
17/11/2023	. ما	BH118	0.2-0.4	G, A	0.6	F: Clayey Sand	Х											
17/11/2023	65	BH118	0.7-1.0	G, A	1.5	Silty Clay				Х				_		•		
17/11/2023	66	BH119	0.07-0.2	G, A	2.2	F: Gravelly Sand	Х											
17/11/2023	67	BH119	0.2-0.5	G, A	1.7	F: Clayey Sand	Х						-					
17/11/2023	68	ВН119	0.7-1.0	G, A	3.3	Silty Clay				Х								
17/11/2023	69	BH120	0.1-0.2	G, A	2.2	F: Gravelly Sand	Х											
17/11/2023	70	BH120	0.2-0.5	G, A	4.3	F: Clayey Sand	Х											
17/11/2023	71	BH120	0.7-1.0	G, A	1.1	Silty Clay				Х								
17/11/2023	72	ВН121	0-0.2	G, A	7.8	F: Silty Clayey Sand	Х											
17/11/2023	73	BH121	0.4-0.5	G, A	8.6	F: Silty Clay	Х											
17/11/2023	74	BH121	0.7-0.95	G, A	22.6	Silty Clay			-	х								
17/11/2023	75	BH122	0.01-0.16	G, A	1.1	F: Gravelly Sand	Х											

Received By:

Date:

Sample Containers: G - 250mg Glass Jar

P - Plastic Bag Time: 1pm

.

A - Ziplock Asbestos Bag

Remarks (comments/detection limits required):

Relinquished By: BP

Batch quote #23SY512_BM10

Date: 20.11.23

				SAM	PLE A.	ND CHAIN OF C	USTC	DDY	FOR	RM -								
<u>TO:</u> ENVIROLAB SEF		PTY LTD		JKE Job		E35614P2					FROM:	•	k	-				
12 ASHLEY STRI				Number:									KE	Ènv	viro	nn	1 o r	nte
CHATSWOOD N		67				_											IC1	113
P: (02) 9910620				Date Res		STANDARD					REAR C							
F: (02) 9910620	1			Required	l:						MACQ	UARIE	PAR	, NSV	/ 2113	}		
											P: 02-9	888 5	000			-9888		
Attention: Aile	2n			Page:		4 of 12					Attenti	on:		E	3renda	an Pag	e	
							, .				ļ		<u>bpag</u>	e@jke	nviror	ments	.com.	au
Location:	Banks	town								Sa	nple Pre	serve	d in E	sky or	ı Ice			
Sampler:	AD/LR	R					1				Te	sts Re	quire	d				
Date Sampled	₄Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample	Combo 6aNEPM	Combo 6	Combo 6a	Combo 3	Asbestos (detection)	ВТЕХ						
17/11/2023	76	BH122 ·	0.2-0.35	G, A	1.6	F: Gravelly Sand	Х											
17/11/2023	77	BH122	0.7-1.0	G, A	3.1	Silty Clay				Х				_				
17/11/2023	78	BH123	0.08-0.2	G, A	1.4	F: Gravelly Sand	Х											
17/11/2023	79	BH123	0.2-0.5	G, Ø	, 1.1	F: Clayey Sand	Х											
17/11/2023	80	BH123	0.7-1.0	G, A	0.9	Silty Clay				Х								
17/11/2023	81	BH124	0.05-0.15	G, A	1.7	F: Gravelly Sand	Х											
17/11/2023	82	BH124	0.2-0.5	G, A	1.4	F: Clayey Sand	Х		_					ļ				
17/11/2023	83	BH124	0.6-1.0	G, A	2.1	Silty Clay				Х	ļ <u>. </u>							
17/11/2023	84	BH125	0.12-0.3	G, A	1.2	F: Gravelly Sand	Х	ļ										
17/11/2023	82	BH125	0.3-0.5	G, A	1.4	F: Clayey Sand	Х											
17/11/2023	86	BH125	0.7-1.0	G, A	13	Silty Clay				X								
17/11/2023	87	BH126	0-0.2	G, A	10.8	F: Silty Sand	Х											
17/11/2023	88	BH126	0.4-0.5	G, A	9.7	F: Silty Clay	Х											
17/11/2023	89	BH126	0.7-0.95	G, A	9.7	Silty Clay				Х								_
15/11/2023	##	SDUP101		G	-	Soil Duplicate				Х		_						
15/11/2023	##	SDUP102	-	G	-	Soil Duplicate				Х								
15/11/2023	##	SDUP103		G	-	Soil Duplicate		X						_				
15/11/2023	##	SDUP104		G	_	Soil Duplicate		X										į
15/11/2023	##	SDUP105	_	G	-	Soil Duplicate		X										
16/11/2023	##	SDUP106	<u>-</u>	G		Soil Duplicate		X										
16/11/2023	90	SDUP107		G	-	Soil Duplicate				Х				ļ				
16/11/2023	91	SDUP108		G	-	Soil Duplicate				Х								
17/11/2023	92	SDUP109	_	G	<u>-</u>	Soil Duplicate		X										
16/11/2023	93	SDUP110	_	G	-	Soil Duplicate	$oxed{oxed}$	Х										
16/11/2023		SDUP111		G	-	Soil Duplicate		X										
Remarks (comn	nents/d	Batch	ts required): quote #23SY dup to Melbo	_			Samp G - 25 A - Zip P - Pla	Omg (olock .	Glass Asbes	Jar	ag					-	_	
Relinquished By	/: BP			Date: 20.			Time:				Receive	ed By:				Date:		

SAMPLE AND CHAIN OF CUSTODY FORM

FROM: TO: ENVIROLAB SERVICES PTY LTD JKE Job E35614P2 Number: 12 ASHLEY STREET Environments CHATSWOOD NSW 2067 REAR OF 115 WICKS ROAD Date Results STANDARD P: (02) 99106200 MACQUARIE PARK, NSW 2113 F: (02) 99106201 Required: P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 5 of 12 Attention: Brendan Page bpage@jkenvironments.com.au Sample Preserved in Esky on Ice Location: Bankstown Tests Required Sampler: AD/LR Asbestos (detection) Sample Container Combo 6a Combo 6 Combo 3 PFAS (short Combo GaNEPM BTEX Lab Sample Depth (m) PID **Date Sampled** Ref: Number Χ G Soil Duplicate 16/11/2023 SDUP112 v Trip Blank Χ 15-17/11/23 TB-S101 ٧ Trip Spike Χ TS-S101 15-17/11/23 Field Rinsate Χ Χ 16/11/2023 FR-101-SPT # Sample Containers: Remarks (comments/detection limits required): Batch quote #23SY512_BM10 G - 250mg Glass Jar A - Ziplock Asbestos Bag #4x BTEX vials, 1x HNO3, 1x PFAS, 2x amber glass ## Inter-lab dup to Melbourne lab please Date: 20.11.23 Relinquished By: BP Time: 1pm Received By: Date:

TO:				JAIV	ir LE M	ND CHAIN OF	<u> </u>	וטט	101	71 4 1	FROM	l:						_
ENVIROLAB S 12 ASHLEY ST	reet			JKE Job Number:		E35614P2						1	KE	_	/iro	nm	ent	S
CHATSWOOD P: (02) 99106 F: (02) 99106	200	2067		Date Res Required		STANDARD					REAR MACO	OF 11	5 WICI E PARI	KS RO	AD V 2113			_
Attention: Ai	ileen			Page:		6 of 12					Atten		000			n Page	-	
Location:	Banks	town, NSW								Sar	nple Pro	eserve	d in Es	ky on	Ice			
Sampler:	AD/LR	ł			1						Te	sts Re	quire	1				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample	PFAS (short suite)		*									
15.11.2023	୩୦	BH101	0-0.1	PFAS	-	F: Silty Clay	Х											
15.11.2023	100	BH101	0.2-0.3	PFAS	-	F: Silty Clay												
15.11.2023	101	BH101	0.7-1	PFAS	-	F: Silty Clay	Х											
15.11.2023	102	BH101	1.3-1.5	PFAS	-	Silty Clay	Х											
15.11.2023	103	8H101	1.9-2	PFAS	-	Silty Clay												
16.11.2023		BH102	0-0.2	PFAS	-	F: Silty Clay	Х											
16.11.2023	105	BH102	0.5-0.7	PFAS	-	Silty Clay												
16.11.2023	106	BH102	0.9-1	PFAS	-	Silty Clay	Х											_
16.11.2023	107	BH102	1.7-1.95	PFAS	-	Silty Clay	Х											
16.11.2023	10-8	BH102	2.4-2.5	PFAS	-	Silty Clay						l						
16.11.2023	109	BH102	3.3-3.45	PFAS	-	Silty Clay												
16.11.2023	116	BH102	3.9-4	PFAS	-	Silty Clay												
16.11.2023	14	BH102	4.8-4.95	PFAS	-	Silty Clay											·	
16.11.2023		BH102	5.4-5.5	PFAS	-	Silty Clay												
16.11.2023	113	BH102	6.3-6.45	PFAS	<u>-</u>	Silty Clay									<u> </u>			
16.11.2023	1111	BH102	6.9-7	PFAS	<u>.</u>	Silty Clay		_										
16.11.2023	115	BH103	0.05-0.15	PFAS		F: Gravelly Sand	Х											
16.11.2023	116	BH103	0.2-0.4	PFAS	-	F: Clayey Sand	Х											
16.11.2023	117	BH103	0.4-0.6	PFAS	-	F: Silty Clay					<u> </u>	<u></u>						_
16.11.2023	118	BH103	0.7-1	PFAS	<u>-</u>	Silty Clay	Х					<u> </u>		<u> </u>				
16.11.2023	119	BH103	1.9-2	PFAS		Silty Clay												
15.11.2023	120	BH104	0-0.1	PFAS	-	F: Silty Clay	X				<u> </u>	<u> </u>						
15.11.2023	121	BH104	0.2-0.3	PFAS	-	F: Silty Clay	Х				1							
15.11.2023	122	ВН104	0.7-1	PFAS	-	Silty Clay												
15.11.2023		BH104	1.7-2	PFAS	-	Silty Clay	Х											
Remarks (co	mment		mits required a quote #23SY		0		Sample G - 250 A - Zipl	mg Gl ock A	ass Jai sbesto	s Ba	g							

Date: 20.11.23

Relinquished By: BP

Date:

Received By:

Time: 1pm

				SAN	MPLE /	<u>and chain of (</u>	CUSTO	<u>YDC</u>	FOR	M								
<u>TO:</u> ENVIROLAB S	EBVICE	S DTV 1TD		JKE Job		E35614P2	-				FROM	<u>:</u>		•				
12 ASHLEY S		JEILLID		Number:		L3J014F2	-	'					~					
		1067		Number.								J	KE	Īην	iro	nn	1er	nts
CHATSWOOI		2007		Data Bas		CTANDADD												
P: (02) 99106 F: (02) 99106				Date Res Required		STANDARD					MACO	-			-	J		
											P: 02-9	9888 5	000		F: 02	-9888	5001	
Attention: Ai	leen			Page:		7 of 12					Attent	ion:		_ E	Brend:	an Pag	;e	
Location:	Bankst	town, NSW								San	ple Pre				lce			
Sampler:	AD/LR	<u> </u>	,		1			_		1	Te	sts Re	quired					
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	PFAS (short suite)											
17.11.2023	124	BH105	0-0.2	PFAS	-	F: Silty Clayey Sand	Х											
17.11.2023	125	BH105	0.4-0.5	PFAS	-	F: Silty Clay	Х											
17.11.2023	126	вн105	0.7-0.95	PFAS	-	Silty Clay	Х					<u> </u>						
17.11.2023	127	вн105	1.7-1.95	PFAS	-	Silty Clay			<u> </u>									
17.11.2023	128	вн105	2.5-2.6	PFAS	-	Silty Clay			ļ									
17.11.2023	129	вн105	3.8-3.95	PFAS	-	Silty Clay			<u> </u>				_					
17.11.2023	138	вн105	4.4-4.5	PFAS	-	Silty Clay			ļ								<u></u>	
17.11.2023	131	BH105	4.8-4.95	PFAS	-	Silty Clay			ļ <u> </u>						<u> </u>			
16.11.2023	132	вн106	0.1-0.3	PFAS	-	F: Silty Clay	Х		<u> </u>									
16.11.2023	133	вн106	0.4-0.6	PFAS	-	F: Silty Clay	Х		<u> </u>									
16.11.2023	1	вн106	1.3-1.5	PFAS	-	Silty Clay	Х		-			_					<u> </u>	
16.11.2023	132	вн106	1.9-2	PFAS	-	Silty Clay			<u> </u>	-	-		-					
16.11.2023	1	вн107	0-0.2	PFAS	-	F: Silty Clay	Х								ļ		ļ:	
16.11.2023		вн107	0.5-0.7	PFAS	-	Silty Clay	Х											
16.11.2023	10.0.	ВН107	0.8-1	PFAS	-	Silty Clay							_					
16.11.2023	1	вн107	1.5-1.7	PFAS	-	Silty Clay	Х											
16.11.2023	† 	вн107	2.5-2.6	PFAS	-	Silty Clay												
16.11.2023	. ``	BH107	3.3-3.45	PFAS		Silty Clay	ļ					ļ						
16.11.2023	+		3.9-4	PFAS		Silty Clay						ļ	 			 		
16.11.2023	 		4.8-4.95	PFAS	-	Silty Clay			ļ	-	-	ļ	ļ			ļ—ļ	<u> </u>	
16.11.2023		BH107	5.4-5.5	PFAS	-	Silty Clay									<u> </u>		<u> </u>	
16.11.2023		BH107	6.3-6.45	PFAS	-	Silty Clay			ļ <u> </u>				-	_			<u> </u>	
16.11.2023	1	вн108	0-0.2	PFAS	-	F: Silty Clay	Х											
16.11.2023	+	BH108	0.5-0.7	PFAS	-	Silty Clay												
16.11.2023		вн108	0.8-0.9	PFAS	-	Silty Clay	X	<u> </u>										
<u>i</u>		Bato	mits required th quote #23S	Y512_BM:			Sample G - 250 A - Zipli PFAS - I	mg Gl ock A PFAS	lass Ja sbesto	r s Bag								
Relinquished	ву: ВР			Date: 20.	11.23		Time: 1	.pm			Receiv	ed By:	•			Date:	:	

				<u> </u>	<u>'LE AN</u>	<u>ID CHAIN O</u>	<u>F CUS</u>	<u> 100</u>)Y F(<u> JRIM</u>								
<u>TO:</u> ENVIROLAB S 12 ASHLEY ST		S PTY LTD		JKE Job Number:		E35614P2					FROM:		K		ivo			
CHATSWOOD P: (02) 99106 F: (02) 99106	200	2067		Date Res Required		STANDARD					REAR (MACQ P: 02-9	OF 115 UARIE	WICK PARK	(S RO	AD / 2113			ILS
Attention: Ai	leen			Page:		8 of 12					Attent		uuu	E		9888 : an Pag		
Location:	Banks	town, NSW		'						Sam	ple Pre	served	in Es	ky on	lce			
Sampler:	AD/LR										Tes	ts Red	quired					
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	PFAS (short suite)											
16.11.2023	विभ्	BH108	1.5-1.6	PFAS	-	Silty Clay												
16.11.2023	150	вн108	1.9-2	PFAS	•	Silty Clay	X											
16.11.2023	151	BH108	3-3.1	PFAS		Silty Clay												
16.11.2023	152	вн108	3.9-4	PFAS	ı	Silty Clay												
16.11.2023	153	BH108	4.8-4.95	PFAS	-	Silty Clay												
15.11.2023	1514	BH109	0-0.15	PFAS	-	F: Silty Clay	Х					_						
15.11.2023	153	BH109	0.2-0.5	PFAS	-	F: Silty Clay	Х									-		
15.11.2023	156	вн109	0.5-0.8	PFAS	Į	F: Silty Clay												
15.11.2023	157	BH109	1.3-1.5	PFAS	-	Silty Clay	Х											
15.11.2023	158	BH109	1.9-2	PFAS	ı	Silty Clay												
15.11.2023	159	BH110	0-0.1	PFAS	-	F: Silty Clay	Х											
15.11.2023	160	BH110	0.5-0.8	PFAS		F: Silty Clay	Х											
15.11.2023	161	BH110	1.3-1.5	PFAS	-	Silty Clay	Х											
15.11.2023	162	BH110	1.9-2	PFAS	-	Silty Clay												
15.11.2023	163	BH111	0-0.1	PFAS	-	F: Silty Clay	Х											
15.11.2023	164	BH111	0.2-0.5	PFAS	-	F: Silty Clay	Х											
15.11.2023	165	BH111	0.5-0.7	PFAS	•	Silty Clay												
15.11.2023	166	BH111	1.3-1.5	PFAS	-	Silty Clay	Х											
15.11.2023	167	BH111	1.9-2	PFAS	•	Silty Clay												-
15.11.2023	168	BH112	0-0.1	PFAS	-	F: Silty Clay	Х											
15.11.2023	169	BH112	0.4-0.7	PFAS	-	F: Silty Clay	Х											
15.11.2023	170	BH112	1.2-1.5	PFAS	-	Silty Clay	Х	-										
15.11.2023	171	BH112	1.9-2	PFAS	•	Silty Clay											-	
16.11.2023	172	BH113	0-0.2	PFAS	•	F: Silty Clay	Х											
16.11.2023	123	BH113	0.5-0.7	PFAS	-	Silty Clay	Х											
Remarks (cor	nments	detection lin	mits required):		•	Sample											
		Batch q	uote #23SY51	L2_BM10			G - 250 A - Ziple PFAS - I	ock A	sbesto	s Bag								
Relinquished	ву: вр			Date: 20.	11.23		Time: 1				Receiv	ed By:				Date:		

	1			SAM	PLE A	<u>ND CHAIN OF</u>	<u>· CUST</u>	<u>'QO'</u>	<u>Y FO</u>	<u>RM</u>				_				
TO: ENVIROLAB S		S PTY LTD		JKE Jop		E35614P2					FROM:	•	k	_	•			
12 ASHLEY ST				Number:								. 1	KF	Èην	iro	nn	ner	nts
CHATSWOOD		:067														1 11 1	1C.	ILO
P: (02) 99106				Date Resu		STANDARD					REAR (-			
F: (02) 99106:	201			Required:	:						MACQ	UARIE	PARK	, NSW	2113			
											P: 02-9	1888 51	000			-9888		
Attention: Ail	een			Page:		9 of 12					Attenti	_	-			an Pag	,e	
Location:	Banks	town, NSW					<u> </u>			Sam	ple Pre	serve	d in Es	ky on	lce			
Sampler:	AD/LR	<u> </u>									Tes	sts Re	quired	ļ 				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	PFAS (short suite)											
16.11.2023	174	BH113	0.8-1	PFAS	•	Silty Clay												
16.11.2023	175	8H113	1.5-1.7	PFAS	-	Silty Clay			<u> </u>							'		
16.11.2023	176	BH113	1.9-2	PFAS	-	Silty Clay	Х											
16.11.2023	177	BH113	3-3.2	PFAS	-	Silty Clay												
16.11.2023	178	BH113	3.9-4	PFAS	-	Silty Clay												
16.11.2023	-	+	4.8-4.95	PFAS	-	Silty Clay												
16.11.2023	180	вн114	0-0.1	PFAS	-	F: Silty Clay	х											
16.11.2023	181	BH114	0.3-0.5	PFAS	-	F: Silty Clay			<u> </u>									
16.11.2023	+	BH114	0.8-0.95	PFAS	-	F: Silty Clay	Х		ļ	<u> </u>		<u> </u>				<u> </u>		
16.11.2023	183	BH114	1.5-1.7	PFAS	-	Silty Clay			<u> </u>	<u> </u>	<u> </u>	ļ				<u> </u>		
16.11.2023		BH114	1.8-2	PFAS	-	Silty Clay	Х		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		
16.11.2023		BH114	3-3.2	PFAS	-	Silty Clay		<u> </u>		<u> </u>	ļ		<u> </u>			\bigsqcup		
16.11.2023		BH114	4-4.2	PFAS	-	Silty Clay	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>					
16.11.2023	,,,,,	BH114	4.8-4.95	PFAS	-	Silty Clay	<u> </u>	<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>		<u> </u>			
16.11.2023	1	BH114	5.7-5.8	PFAS	-	Silty Clay	<u> </u>									\bigsqcup		
16.11.2023	 	BH115	0.08-0.2	PFAS	-	 	 ^ `			<u> </u>		<u> </u>	<u> </u>			\bigsqcup		
16.11.2023	 '	BH115	0.3-0.5	PFAS	-	F: Clayey Sand	X		ļ!	<u> </u>	<u> </u>					\bigsqcup		
16.11.2023	1 -1	BH115	0.8-1	PFAS	-	Silty Clay				<u> </u>	ļ							
16.11.2023		8H115	1.9-2	PFAS	-	Silty Clay	Х				<u> </u>	<u> </u>						
16.11.2023	· · · ·	BH116	0.06-0.2	PFA5	-	F: Gravelly Sand	Х		ļ	<u> </u>	<u> </u>		<u> </u>					
16.11.2023	194	BH116	0.2-0.5	PFAS	-	F: Clayey Sand	X					<u> </u>						Ш
16.11.2023	1	BH116	0.7-1	PFAS	-	Silty Clay	X			<u> </u>		<u> </u>						
16.11.2023	1	ВН116	1.9-2	PFAS	-	Silty Clay	↓							<u> </u>		\bigsqcup		<u> </u>
16.11.2023	197	BH117	0.06-0.2	PFAS	-	F: Gravelly Sand	├ ──┤									<u> </u>		<u> </u>
16.11.2023	7 1	l.	0.4-0.7	PFAS	-	F: Clayey Sand	X				<u> </u>							l
		Batch	nits required): quote #23\$Y5	512_BM10			Sample G - 250r A - Ziplo PFAS - P	mg Gla ock As <u>PFA</u> S C	ass Jar sbesto	r s Bag								
Relinquished	By: BP			Date: 20.1	11.23		Time: 1	pm			Receive	ed By:				Date:		

SAMPLE AND CHAIN OF CUSTODY FORM

				SAI	<u>VIPLE /</u>	AND CHAIN OF I	<u> </u>	<u>זענ</u>	<u>FUK</u>	<u>IVI</u>								
<u>TO:</u> ENVIROLAB S	SERVICE	S PTY LTD		IKE Jop		E35614P2				•	FROM		Z	-				
12 ASHLEY S	TREET			Number:								,	IKE	Ènv	ira			-t-
CHATSWOOL		2067										J	IN.C	=1 I V	'II' O	4 11 [ıeı	ILS
P: (02) 99106				Date Res		STANDARD					REAR	OF 11	5 WICE	KS RO	AD			
F: (02) 99106	201			Required	l :						MACQ			(, NSV				
											P: 02-9		000			-9888	-	
Attention: Ai	ileen			Page:		10 of 12					Attent	ion:		ı	Brenda	an Pag	;e	
	Π.			ļ						C	ala Dra		J !_ F_		1		—	
Location:	1	town, NSW								San	ple Pre				ice			
Sampler:	AD/LR	<u> </u>			I			r -		r	Te	sts Re	quired	1				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	PFAS (short suite)											
16.11.2023	199	BH117	1.3-1.5	PFAS	-	Silty Clay	Х											
16.11.2023	200	BH117	1.9-2	PFAS	-	Silty Clay					<u> </u>							
17.11.2023	201	BH118	0.06-0.2	PFAS	-	F: Gravelly Sand	Х											
17.11.2023	302	BH118	0.2-0.4	PFAS	-	F: Clayey Sand	Х											
17.11.2023	203	BH118	0.7-0.1	PFAS	-	Silty Clay	Х											
17.11.2023	204	BH118	1.9-2	PFAS	•	Silty Clay												
17.11.2023	205	BH119	0.07-0.2	PFAS	•	F: Gravelly Sand	Х											
17.11.2023	20€	BH119	0.2-0.5	PFAS	•	F: Clayey Sand	Х											
17.11.2023	207	BH119	0.7-1	PFAS	-	Silty Clay												
17.11.2023	200	вн119	1.9-2	PFAS	-	Silty Clay	Х											
17.11.2023	N/R-	BH120	0.08-0.2	PFAS	-	F: Gravelly Sand		l										
17.11.2023	209	вн120	0.1-0.2	PFAS	-	F: Gravelly Sand	X											
17.11.2023	210	вн120	0.2-0.5	PFAS	-	F: Clayey Sand	Х											
17.11.2023	211	BH120	0.7-1	PFAS	-	Silty Clay	Х											
17.11.2023	212	BH120	2-2.1	PFAS	-	Silty Clay												
17.11.2023	213	BH121	0-0.2	PFAS	-	F: Silty Clayey Sand	Х											
17.11.2023	244	BH121	0.4-0.5	PFAS	-	F: Silty Clay	Х											
17.11.2023	218	BH121	0.7-0.95	PFAS	-	Silty Clay												
17.11.2023	26	ВН121	1.7-1.95	PFAS	-	Silty Clay	Х											
17.11.2023	217	BH121	2.5-2.6	PFAS	-	Silty Clay												
17.11.2023	218	BH121	3.3-3.45	PFAS	-	Silty Clay												
17.11.2023	219	BH121	3.9-4	PFAS	-	Siity Clay												
17.11.2023	+	BH121	4.8-4.95	PFAS	-	Silty Clay												
17.11.2023	221	BH121	5.4-5.5	PFAS	-	Silty Clay												
17.11.2023	-	BH121	6.3-6.45	PFAS	•	Silty Clay												
Remarks (co	mments	detection li	mits required): 			Sample								-			
		Bato	:h quote #23S	Y512_BM:	10		G - 250 A - Zìpl	ock A	sbesto	s Bag								
natio	l n **			D-1 20	11 22		PFAS -		Contai	ner	Da					<u>Б.</u> :		
Relinquished	і ву: вР			Date: 20.	11.23		Time: 1	.pm			Receiv	ea By	:			Date:	;	

SAMPLE AND CHAIN OF CUSTODY FORM

TO: FROM: **ENVIROLAB SERVICES PTY LTD** JKE Job E35614P2 12 ASHLEY STREET Number: **K**Environments CHATSWOOD NSW 2067 P: (02) 99106200 Date Results STANDARD **REAR OF 115 WICKS ROAD** F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 11 of 12 Attention: **Brendan Page** Sample Preserved in Esky on Ice Location: Bankstown, NSW **Tests Required** AD/LR Sampler: Sample Description PFAS (shart Container Date Lab Sample Depth (m) PID Number Sampled Ref: 223 **PFAS** Silty Clay 17.11.2023 BH121 6.9-7 **PFAS** F: Gravelly Sand X 17.11.2023 BH122 0.01-0.16 225 **PFAS** F: Gravelly Sand Χ 0.2-0.35 17.11.2023 BH122 226 0.7-1 PEAS Silty Clay X 17.11.2023 BH122 **PFAS** Silty Clay 221 17.11.2023 BH122 1.9-2 228 8H123 -**PFAS** F: Gravelly Sand X 17.11.2023 0.08-0.2 229 BH123 PEAS F: Clayey Sand X 17.11.2023 0.2-0.5 X **PFAS** Silty Clay 17.11.2023 630 BH123 0.7-1 PFAS (A)V-BH123 Silty Clay _ 17.11.2023 1.9-2 **PFAS** F: Gravelly Sand Χ 17.11.2023 BH124 0.05-0.15 **PFAS** F: Clayey Sand 232 BH124 0.2-0.5 17.11.2023 253 BH124 **PFAS** Silty Clay 17.11.2023 0.6-1 **PFAS** Silty Clay X 234 BH124 17.11.2023 1.9-2 F: Gravelly Sand Χ 235 BH125 PEAS 17.11.2023 0.12-0.3 236 **PFAS** F: Clayey Sand Χ 17.11.2023 BH125 0.3-.5 237 PFAS Silty Clay Χ 17.11.2023 BH125 0.7-1 338 BH125 PFAS Silty Clay 1.9-2 17.11.2023 **PFAS** X 0-0.2 F: Silty Sand BH126 17.11.2023 140 BH126 PFAS F: Silty Clay X 17.11.2023 0.4-0.5 254 **PFAS** Χ BH126 Silty Clay 17.11.2023 0.7-0.95 244 BH126 PFAS Silty Clay 17.11.2023 1.4-1.5 **PFAS** Silty Clay BH126 17.11.2023 1.8-1.95 **PFAS** BH126 Silty Clay 17.11.2023 2.5-2.6 **PFAS** Sifty Clay 17.11.2023 BH126 3.3-3.45 17.11.2023 245 BH126 **PFAS** Silty Clay 3.9-4 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar Batch quote #235Y512_BM10 A - Ziplock Asbestos Bag PFAS - PFAS Container Date: 20.11.23 Relinquished By: BP Time: 1pm Received By: Date:

SAMPLE AND CHAIN OF CUSTODY FORM FROM:

TO: **ENVIROLAB SERVICES PTY LTD** JKE Job 🖐 E35614P2 12 ASHLEY STREET Number: nvironments CHATSWOOD NSW 2067 P: (02) 99106200 **Date Results STANDARD** REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 12 of 12 Attention: **Brendan Page** Sample Preserved in Esky on Ice Location: Bankstown, NSW Tests Required AD/LR Sampler: Sample Description Sample Container PFAS (short suite) Lab Sample PID **Date Sampled** Depth (m) Ref: Number Silty Clay 247 BH126 **PFAS** 17.11.2023 4.8-4.95 PFAS 248 BH126 Silty Clay 17.11.2023 5.5-5.6 299 PFAS Silty Clay BH126 17.11.2023 6.3-6.45 17.11.2023 250 BH126 6.9-7 PFAS Silty Clay PFAS 15/11/2023 SDUP101 Soil Duplicate X ## PFAS Soil Duplicate Χ 15/11/2023 ## SDUP102 Χ Soil Duplicate SDUP103 **PFAS** _ 15/11/2023 ## PFAS Soil Duplicate Χ 15/11/2023 ## SDUP104 Χ 251 PFAS Soil Duplicate 15/11/2023 SDUP105 25Z X 16/11/2023 PFAS Soil Duplicate SDUP106 253 PFAS Soil Duplicate Χ 16/11/2023 SDUP107 254 PFAS Soil Duplicate 16/11/2023 SDUP108 285 lχ **PFAS** Soil Duplicate 16/11/2023 SDUP112 _ 256 PFAS Soil Duplicate 17/11/2023 SDUP113 257 TB-S101 PFAS Trip Blank X 15-17/11/23 Remarks (comments/detection limits required): Sample Containers: G - 250mg Glass Jar Batch quote #23SY512_BM10 A - Ziplock Asbestos Bag ## Inter-lab dup to Melbourne lab please PFAS - PFAS Container Date: 20.11.23 Relinquished By: BP Time: 1pm Received By: Date:

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 338230-A

Client Details	
Client	JK Environments
Attention	Brendan Page
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35614P2, Bankstown
Number of Samples	Additional analysis
Date samples received	20/11/2023
Date completed instructions received	01/12/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	08/12/2023	
Date of Issue	08/12/2023	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Amanda Chui, Air Toxics Team Leader Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist Authorised By

Nancy Zhang, Laboratory Manager

CEC					
Our Reference		338230-A-9	338230-A-57	338230-A-66	338230-A-81
Your Reference	UNITS	BH103	BH116	BH119	BH124
Depth		0.05-0.15	0.06-0.2	0.07-0.2	0.05-0.15
Date Sampled		16/11/2023	16/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	08/12/2023	08/12/2023	08/12/2023	08/12/2023
Date analysed	-	08/12/2023	08/12/2023	08/12/2023	08/12/2023
Exchangeable Ca	meq/100g	14	17	16	11
Exchangeable K	meq/100g	0.5	0.6	0.5	0.4
Exchangeable Mg	meq/100g	3.1	2.8	2.8	2.2
Exchangeable Na	meq/100g	2.3	2.4	2.7	1.8
Cation Exchange Capacity	meq/100g	20	22	22	15

Envirolab Reference: 338230-A

TCLP Preparation - Acid						
Our Reference		338230-A-1	338230-A-5	338230-A-9	338230-A-10	338230-A-13
Your Reference	UNITS	BH101	BH102	BH103	BH103	BH104
Depth		0-0.1	0-0.2	0.05-0.15	0.2-0.4	0-0.1
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	7.1	7.3	7.8	7.8	7.8
pH of soil TCLP (after HCI)	pH units	2.1	2.1	2.1	2.1	2.0
Extraction fluid used		1	1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.1	5.0	5.0

TCLP Preparation - Acid						
Our Reference		338230-A-23	338230-A-24	338230-A-31	338230-A-32	338230-A-35
Your Reference	UNITS	BH107	BH107	BH109	BH109	BH110
Depth		0-0.2	0.5-0.7	0-0.15	0.2-0.5	0-0.1
Date Sampled		16/11/2023	16/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	6.4	6.1	6.1	6.1	7.3
pH of soil TCLP (after HCl)	pH units	2.0	2.0	2.0	2.0	2.1
Extraction fluid used		1	1	1	1	1
pH of final Leachate	pH units	4.9	5.0	5.0	5.0	5.0

TCLP Preparation - Acid						
Our Reference		338230-A-38	338230-A-39	338230-A-45	338230-A-49	338230-A-53
Your Reference	UNITS	BH111	BH111	BH113	BH114	BH114
Depth		0-0.1	0.2-0.5	0-0.2	0-0.1	1.8-2.0
Date Sampled		15/11/2023	15/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	7.3	6.7	6.5	6.4	6.1
pH of soil TCLP (after HCI)	pH units	2.1	2.0	2.0	2.0	2.0
Extraction fluid used		1	1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.0	5.0	5.0

TCLP Preparation - Acid						
Our Reference		338230-A-54	338230-A-57	338230-A-60	338230-A-62	338230-A-63
Your Reference	UNITS	BH115	BH116	BH117	BH117	BH118
Depth		0.08-0.2	0.06-0.2	0.06-0.2	1.3-1.5	0.06-0.2
Date Sampled		16/11/2023	16/11/2023	16/11/2023	16/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	6.5	8.3	8.9	7.0	8.3
pH of soil TCLP (after HCl)	pH units	2.0	2.2	2.3	2.1	2.2
Extraction fluid used		1	1	1	1	1
pH of final Leachate	pH units	5.3	5.2	5.1	4.9	5.1

Envirolab Reference: 338230-A

TCLP Preparation - Acid						
Our Reference		338230-A-66	338230-A-72	338230-A-73	338230-A-75	338230-A-77
Your Reference	UNITS	BH119	BH121	BH121	BH122	BH122
Depth		0.07-0.2	0-0.2	0.4-0.5	0.01-0.16	0.7-1.0
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	8.9	7.3	6.6	6.9	6.4
pH of soil TCLP (after HCI)	pH units	2.2	2.2	2.1	2.0	2.0
Extraction fluid used		1	1	1	1	1
pH of final Leachate	pH units	5.2	5.0	4.9	5.0	4.9

TCLP Preparation - Acid				
Our Reference		338230-A-78	338230-A-81	338230-A-87
Your Reference	UNITS	BH123	BH124	BH126
Depth		0.08-0.2	0.05-0.15	0-0.2
Date Sampled		17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	6.4	8.1	8.5
pH of soil TCLP (after HCI)	pH units	2.0	2.3	2.3
Extraction fluid used		1	1	1
pH of final Leachate	pH units	5.1	5.0	4.9

Envirolab Reference: 338230-A

Metals from Leaching Fluid pH 2.9 or 5						
Our Reference		338230-A-1	338230-A-9	338230-A-45	338230-A-54	338230-A-57
Your Reference	UNITS	BH101	BH103	BH113	BH115	BH116
Depth		0-0.1	0.05-0.15	0-0.2	0.08-0.2	0.06-0.2
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/12/2023	07/12/2023	07/12/2023	07/12/2023	07/12/2023
Date analysed	-	07/12/2023	07/12/2023	07/12/2023	07/12/2023	07/12/2023
Lead	mg/L	0.05	[NA]	<0.03	[NA]	[NA]
Nickel	mg/L		0.09	[NA]	0.29	0.43

Metals from Leaching Fluid pH 2.9 or 5						
Our Reference		338230-A-60	338230-A-63	338230-A-66	338230-A-75	338230-A-78
Your Reference	UNITS	BH117	BH118	BH119	BH122	BH123
Depth		0.06-0.2	0.06-0.2	0.07-0.2	0.01-0.16	0.08-0.2
Date Sampled		16/11/2023	17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/12/2023	07/12/2023	07/12/2023	07/12/2023	07/12/2023
Date analysed	-	07/12/2023	07/12/2023	07/12/2023	07/12/2023	07/12/2023
Nickel	mg/L	0.2	0.07	0.53	0.05	0.08

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		338230-A-81
Your Reference	UNITS	BH124
Depth		0.05-0.15
Date Sampled		17/11/2023
Type of sample		Soil
Date extracted	-	07/12/2023
Date analysed	-	07/12/2023
Nickel	mg/L	0.06

Envirolab Reference: 338230-A

PAHs in TCLP (USEPA 1311)		
Our Reference		338230-A-49
Your Reference	UNITS	BH114
Depth		0-0.1
Date Sampled		16/11/2023
Type of sample		Soil
Date extracted	-	07/12/2023
Date analysed	-	08/12/2023
Naphthalene in TCLP	mg/L	0.003
Acenaphthylene in TCLP	mg/L	<0.0001
Acenaphthene in TCLP	mg/L	0.019
Fluorene in TCLP	mg/L	0.012
Phenanthrene in TCLP	mg/L	0.015
Anthracene in TCLP	mg/L	0.002
Fluoranthene in TCLP	mg/L	0.003
Pyrene in TCLP	mg/L	0.002
Benzo(a)anthracene in TCLP	mg/L	<0.0001
Chrysene in TCLP	mg/L	0.0001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.0002
Benzo(a)pyrene in TCLP	mg/L	<0.0001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.0001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.0001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.0001
Total +ve PAH's	mg/L	0.057
Surrogate p-Terphenyl-d14	%	88

Envirolab Reference: 338230-A

PFAS in TCLP Short						
Our Reference		338230-A-1	338230-A-5	338230-A-10	338230-A-13	338230-A-23
Your Reference	UNITS	BH101	BH102	BH103	BH104	BH107
Depth		0-0.1	0-0.2	0.2-0.4	0-0.1	0-0.2
Date Sampled		15/11/2023	16/11/2023	16/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Date analysed	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.54	<0.01	0.02	0.02	0.02
Perfluorooctanesulfonic acid PFOS	μg/L	0.94	0.07	0.02	0.05	0.01
Perfluorooctanoic acid PFOA	μg/L	0.04	<0.01	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	100	105	104	94	100
Surrogate ¹³ C ₂ PFOA	%	102	99	113	103	104
Extracted ISTD 18 O2 PFHxS	%	99	102	105	99	102
Extracted ISTD 13 C4 PFOS	%	98	99	101	103	103
Extracted ISTD 13 C4 PFOA	%	96	104	99	99	99
Extracted ISTD 13 C2 6:2FTS	%	98	99	100	105	98
Extracted ISTD 13 C2 8:2FTS	%	130	131	140	134	131
Total Positive PFHxS & PFOS	μg/L	1.5	0.07	0.04	0.06	0.03
Total Positive PFOS & PFOA	μg/L	0.98	0.07	0.02	0.05	0.01
Total Positive PFAS	μg/L	1.5	0.07	0.04	0.06	0.03

Envirolab Reference: 338230-A

PFAS in TCLP Short						
Our Reference		338230-A-24	338230-A-31	338230-A-32	338230-A-35	338230-A-38
Your Reference	UNITS	BH107	BH109	BH109	BH110	BH111
Depth		0.5-0.7	0-0.15	0.2-0.5	0-0.1	0-0.1
Date Sampled		16/11/2023	15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Date analysed	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	<0.01	0.07	<0.01	0.05
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	0.04	<0.01	0.06	0.14
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	99	97	94	98	98
Surrogate ¹³ C ₂ PFOA	%	101	107	111	103	103
Extracted ISTD 18 O2 PFHxS	%	102	105	104	103	105
Extracted ISTD 13 C4 PFOS	%	102	106	105	102	105
Extracted ISTD 13 C ₄ PFOA	%	100	101	95	102	106
Extracted ISTD 13 C ₂ 6:2FTS	%	104	109	109	108	107
Extracted ISTD 13 C ₂ 8:2FTS	%	131	135	139	126	135
Total Positive PFHxS & PFOS	μg/L	0.01	0.04	0.07	0.06	0.20
Total Positive PFOS & PFOA	μg/L	0.01	0.04	<0.01	0.06	0.14
Total Positive PFAS	μg/L	0.01	0.04	0.07	0.06	0.20

Envirolab Reference: 338230-A

PFAS in TCLP Short						
Our Reference		338230-A-39	338230-A-45	338230-A-49	338230-A-53	338230-A-62
Your Reference	UNITS	BH111	BH113	BH114	BH114	BH117
Depth		0.2-0.5	0-0.2	0-0.1	1.8-2.0	1.3-1.5
Date Sampled		15/11/2023	16/11/2023	16/11/2023	16/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Date analysed	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.32	0.04	<0.01	0.07	0.06
Perfluorooctanesulfonic acid PFOS	μg/L	0.41	0.06	0.08	0.03	0.01
Perfluorooctanoic acid PFOA	μg/L	0.02	<0.01	<0.01	<0.01	<0.01
6:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	98	106	104	103	97
Surrogate ¹³ C ₂ PFOA	%	106	102	104	100	108
Extracted ISTD 18 O2 PFHxS	%	106	104	103	100	105
Extracted ISTD 13 C ₄ PFOS	%	102	99	101	99	104
Extracted ISTD 13 C ₄ PFOA	%	101	103	107	106	99
Extracted ISTD ¹³ C ₂ 6:2FTS	%	104	111	112	98	109
Extracted ISTD ¹³ C ₂ 8:2FTS	%	138	138	134	127	140
Total Positive PFHxS & PFOS	μg/L	0.74	0.10	0.08	0.10	0.08
Total Positive PFOS & PFOA	μg/L	0.43	0.06	0.08	0.03	0.01
Total Positive PFAS	μg/L	0.75	0.10	0.08	0.10	0.08

Envirolab Reference: 338230-A

PFAS in TCLP Short					
Our Reference		338230-A-72	338230-A-73	338230-A-77	338230-A-87
Your Reference	UNITS	BH121	BH121	BH122	BH126
Depth		0-0.2	0.4-0.5	0.7-1.0	0-0.2
Date Sampled		17/11/2023	17/11/2023	17/11/2023	17/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Date analysed	-	06/12/2023	06/12/2023	06/12/2023	06/12/2023
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.05	0.25	0.15	0.33
Perfluorooctanesulfonic acid PFOS	μg/L	0.54	0.03	0.03	2.8
Perfluorooctanoic acid PFOA	μg/L	<0.01	<0.01	<0.01	0.03
6:2 FTS	μg/L	<0.01	<0.01	<0.01	<0.01
8:2 FTS	μg/L	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	102	102	102	98
Surrogate ¹³ C ₂ PFOA	%	95	103	104	101
Extracted ISTD 18 O2 PFHxS	%	102	106	107	103
Extracted ISTD ¹³ C ₄ PFOS	%	101	101	103	104
Extracted ISTD 13 C4 PFOA	%	106	101	98	105
Extracted ISTD 13 C ₂ 6:2FTS	%	99	97	97	103
Extracted ISTD 13 C ₂ 8:2FTS	%	144	135	144	134
Total Positive PFHxS & PFOS	μg/L	0.59	0.28	0.17	3.1
Total Positive PFOS & PFOA	μg/L	0.54	0.03	0.03	2.8
Total Positive PFAS	μg/L	0.59	0.28	0.17	3.2

Envirolab Reference: 338230-A

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 338230-A

QU	ALITY CONT	ROL: CE	:C			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			08/12/2023	81	08/12/2023	08/12/2023		08/12/2023	
Date analysed	-			08/12/2023	81	08/12/2023	08/12/2023		08/12/2023	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	81	11	14	24	93	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	81	0.4	0.4	0	104	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	81	2.2	2.5	13	93	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	81	1.8	2.1	15	109	[NT]

Envirolab Reference: 338230-A

QUALITY CONTROL	: Metals fror	n Leachir	ng Fluid pH 2.9 or s	5		Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	338230-A-9
Date extracted	-			07/12/2023	54	07/12/2023	07/12/2023		07/12/2023	07/12/2023
Date analysed	-			07/12/2023	54	07/12/2023	07/12/2023		07/12/2023	07/12/2023
Lead	mg/L	0.03	Metals-020	<0.03	[NT]			[NT]	114	114
Nickel	mg/L	0.02	Metals-020	<0.02	54	0.29	0.1	97	113	116

QUALITY CONTROL	: Metals fror	n Leachir	ng Fluid pH 2.9 or s	5		Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	81	07/12/2023	07/12/2023		[NT]	[NT]	
Date analysed	-			[NT]	81	07/12/2023	07/12/2023		[NT]	[NT]	
Nickel	mg/L	0.02	Metals-020	[NT]	81	0.06	0.06	0	[NT]	[NT]	

Envirolab Reference: 338230-A

QUALITY CONT	TROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			07/12/2023	[NT]		[NT]	[NT]	07/12/2023	
Date analysed	-			08/12/2023	[NT]		[NT]	[NT]	08/12/2023	
Naphthalene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	113	
Acenaphthylene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	105	
Fluorene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	113	
Phenanthrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	119	
Anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	118	
Pyrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	124	
Benzo(a)anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	89	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.0002	Org-022/025	<0.0002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	133	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	84	[NT]		[NT]	[NT]	103	

Envirolab Reference: 338230-A

QUALITY C	ONTROL: P	FAS in T	CLP Short			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	338230-A-5	
Date prepared	-			06/12/2023	10	06/12/2023	06/12/2023		06/12/2023	06/12/2023	
Date analysed	-			06/12/2023	10	06/12/2023	06/12/2023		06/12/2023	06/12/2023	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	10	0.02	0.01	67	117	115	
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	10	0.02	0.01	67	109	117	
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	10	<0.01	<0.01	0	109	119	
6:2 FTS	μg/L	0.01	Org-029	<0.01	10	<0.01	<0.01	0	120	122	
8:2 FTS	μg/L	0.02	Org-029	<0.02	10	<0.02	<0.02	0	106	118	
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	10	104	100	4	98	103	
Surrogate ¹³ C ₂ PFOA	%		Org-029	102	10	113	95	17	101	105	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	100	10	105	100	5	94	100	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	105	10	101	101	0	102	98	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	98	10	99	102	3	94	97	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	101	10	100	101	1	89	97	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	119	10	140	130	7	130	124	

QUALITY C	ONTROL: P	FAS in T	CLP Short			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	45	06/12/2023	06/12/2023			[NT]	
Date analysed	-			[NT]	45	06/12/2023	06/12/2023			[NT]	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	[NT]	45	0.04	0.04	0		[NT]	
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	[NT]	45	0.06	0.07	15		[NT]	
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	[NT]	45	<0.01	<0.01	0		[NT]	
6:2 FTS	μg/L	0.01	Org-029	[NT]	45	<0.01	<0.01	0		[NT]	
8:2 FTS	μg/L	0.02	Org-029	[NT]	45	<0.02	<0.02	0		[NT]	
Surrogate ¹³ C ₈ PFOS	%		Org-029	[NT]	45	106	101	5		[NT]	
Surrogate ¹³ C ₂ PFOA	%		Org-029	[NT]	45	102	104	2		[NT]	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	[NT]	45	104	106	2		[NT]	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	[NT]	45	99	102	3		[NT]	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	[NT]	45	103	100	3	[NT]	[NT]	

Envirolab Reference: 338230-A

QUALITY C	ONTROL: P	FAS in T	CLP Short			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	[NT]	45	111	99	11		[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	[NT]	45	138	145	5		[NT]

Envirolab Reference: 338230-A

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 338230-A

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 338230-A Page | 18 of 19

Report Comments

Metals in TCLP USEPA1311 - The duplicate result is greater than the acceptable RPD. The RPD for duplicate results is accepted due to the inhomogeneous nature of the sample/s.

Envirolab Reference: 338230-A Page | 19 of 19

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Brendan Page

Sample Login Details		
Your reference	E35614P2, Bankstown	
Envirolab Reference	338230-A	
Date Sample Received	20/11/2023	
Date Instructions Received	01/12/2023	
Date Results Expected to be Reported	08/12/2023	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
No PFAS jars received for samples requiring PFAS TCLP	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH101-0-0.1		✓	✓			✓	
BH101-0.2-0.3							✓
BH101-0.7-1.0							✓
BH101-1.3-1.5							✓
BH102-0-0.2		✓				✓	
BH102-0.5-0.7							✓
BH102-0.9-1.0							✓
BH102-1.7-1.95							✓
BH103-0.05-0.15	✓	✓		✓			
BH103-0.2-0.4		✓				✓	
BH103-0.4-0.6							✓
BH103-0.7-1.0							✓
BH104-0-0.1		✓				✓	
BH104-0.2-0.3							✓
BH104-0.7-1.0							✓
BH104-1.7-2.0							✓
BH105-0-0.2							✓
BH105-0.4-0.5							✓
BH105-0.7-0.95							✓
BH106-0.1-0.3							✓
BH106-0.4-0.6							✓
BH106-1.3-1.5							✓
BH107-0-0.2		✓				✓	
BH107-0.5-0.7		✓				✓	
BH107-0.8-1.0							✓
BH107-1.5-1.7							✓
BH108-0-0.2							✓
BH108-0.5-0.7							✓
BH108-0.8-1.0							✓
BH108-1.5-1.6							✓
BH109-0-0.15		✓				✓	
BH109-0.2-0.5		✓				✓	

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH109-0.5-0.8							✓
BH109-1.3-1.5							✓
BH110-0-0.1		✓				✓	
BH110-0.5-0.8							✓
BH110-1.3-1.5							✓
BH111-0-0.1		✓				✓	
BH111-0.2-0.5		✓				✓	
BH111-0.5-0.7							✓
BH111-1.3-1.5							✓
BH112-0-0.1							✓
BH112-0.4-0.7							✓
BH112-1.2-1.5							✓
BH113-0-0.2		✓	✓			✓	
BH113-0.5-0.7							✓
BH113-0.8-1.0							✓
BH113-1.5-1.7							✓
BH114-0-0.1		✓			✓	✓	
BH114-0.3-0.5							✓
BH114-0.8-0.95							✓
BH114-1.5-1.7							✓
BH114-1.8-2.0		✓				✓	
BH115-0.08-0.2		✓		✓			
BH115-0.3-0.5							✓
BH115-0.8-1.0							✓
BH116-0.06-0.2	✓	✓		✓			
BH116-0.2-0.5							✓
BH116-0.7-1.0							✓
BH117-0.06-0.2		✓		✓			
BH117-0.4-0.7							✓
BH117-1.3-1.5		✓				✓	
BH118-0.06-0.2		✓		✓			
BH118-0.2-0.4							✓

ENVIROLAB GROUP ENVIROLAB GROUP LABTEC

Envirolab Services Pty Ltd

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH118-0.7-1.0							✓
BH119-0.07-0.2	✓	✓		✓			
BH119-0.2-0.5							✓
BH119-0.7-1.0							✓
BH120-0.1-0.2							✓
BH120-0.2-0.5							✓
BH120-0.7-1.0							✓
BH121-0-0.2		✓				✓	
BH121-0.4-0.5		✓				✓	
BH121-0.7-0.95							✓
BH122-0.01-0.16		✓		✓			
BH122-0.2-0.35							✓
BH122-0.7-1.0		✓				✓	
BH123-0.08-0.2		✓		✓			
BH123-0.2-0.5							✓
BH123-0.7-1.0							✓
BH124-0.05-0.15	✓	✓		✓			
BH124-0.2-0.5							✓
BH124-0.6-1.0							✓
BH125-0.12-0.3							✓
BH125-0.3-0.5							✓
BH125-0.7-1.0							✓
BH126-0-0.2		✓				✓	
BH126-0.4-0.5							✓
BH126-0.7-0.95							✓
SDUP107							✓
SDUP108							✓
SDUP109							✓
SDUP110							✓
SDUP111							✓
SDUP112							✓
TB-S101							✓

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
TS-S101							✓
FR-101-SPT							✓
BH101-0-0.1							✓
BH101-0.2-0.3							✓
BH101-0.7-1							✓
BH101-1.3-1.5							✓
BH101-1.9-2							✓
BH102-0-0.2							✓
BH102-0.5-0.7							✓
BH102-0.9-1							✓
BH102-1.7-1.95							✓
BH102-2.4-2.5							✓
BH102-3.3-3.45							✓
BH102-3.9-4							✓
BH102-4.8-4.95							✓
BH102-5.4-5.5							✓
BH102-6.3-6.45							✓
BH102-6.9-7							✓
BH103-0.05-0.15							✓
BH103-0.2-0.4							✓
BH103-0.4-0.6							✓
BH103-0.7-1							✓
BH103-1.9-2							✓
BH104-0-0.1							✓
BH104-0.2-0.3							✓
BH104-0.7-1							✓
BH104-1.7-2							✓
BH105-0-0.2							✓
BH105-0.4-0.5							✓
BH105-0.7-0.95							✓
BH105-1.7-1.95							✓
BH105-2.5-2.6							✓

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH105-3.8-3.95							✓
BH105-4.4-4.5							✓
BH105-4.8-4.95							✓
BH106-0.1-0.3							✓
BH106-0.4-0.6							✓
BH106-1.3-1.5							✓
BH106-1.9-2							✓
BH107-0-0.2							✓
BH107-0.5-0.7							✓
BH107-0.8-1							✓
BH107-1.5-1.7							✓
BH107-2.5-2.6							✓
BH107-3.3-3.45							✓
BH107-3.9-4							✓
BH107-4.8-4.95							✓
BH107-5.4-5.5							✓
BH107-6.3-6.45							✓
BH108-0-0.2							✓
BH108-0.5-0.7							✓
BH108-0.8-0.9							✓
BH108 -1.5-1.6							✓
BH108-1.9-2							✓
BH108-3-3.1							✓
BH108-3.9-4							✓
BH108-4.8-4.95							✓
BH109-0-0.15							✓
BH109-0.2-0.5							✓
BH109-0.5-0.8							✓
BH109-1.3-1.5							✓
BH109-1.9-2							✓
BH110-0-0.1							✓
BH110-0.5-0.8							✓

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH110-1.3-1.5							✓
BH110-1.9-2							✓
BH111-0-0.1							✓
BH111-0.2-0.5							✓
BH111-0.5-0.7							✓
BH111-1.3-1.5							✓
BH111-1.9-2							✓
BH112-0-0.1							✓
BH112-0.4-0.7							✓
BH112-1.2-1.5							✓
BH112-1.9-2							✓
BH113-0-0.2							✓
BH113-0.5-0.7							✓
BH113-0.8-1							✓
BH113-1.5-1.7							✓
BH113-1.9-2							✓
BH113-3-3.2							✓
BH113-3.9-4							✓
BH113-4.8-4.95							✓
BH114-0-0.1							✓
BH114-0.3-0.5							✓
BH114-0.8-0.95							✓
BH114-1.5-1.7							✓
BH114-1.8-2							✓
BH114-3-3.2							✓
BH114-4-4.2							✓
BH114-4.8-4.95							✓
BH114-5.7-5.8							✓
BH115-0.08-0.2							✓
BH115-0.3-0.5							✓
BH115-0.8-1							✓
BH115-1.9-2							✓

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH116-0.06-0.2							✓
BH116-0.2-0.5							✓
BH116-0.7-1							✓
BH116-1.9-2							✓
BH117-0.06-0.2							✓
BH117-0.4-0.7							✓
BH117 -1.3-1.5							✓
BH117-1.9-2							✓
BH118-0.06-0.2							✓
BH118-0.2-0.4							✓
BH118-0.7-0.1							✓
BH118-1.9-2							✓
BH119-0.07-0.2							✓
BH119-0.2-0.5							✓
BH119-0.7-1							✓
BH119-1.9-2							✓
BH120 -0.1-0.2							✓
BH120-0.2-0.5							✓
BH120-0.7-1							✓
BH120-2-2.1							✓
BH121-0-0.2							✓
BH121-0.4-0.5							✓
BH121-0.7-0.95							✓
BH121-1.7-1.95							✓
BH121-2.5-2.6							✓
BH121-3.3-3.45							✓
BH121-3.9-4							✓
BH121-4.8-4.95							✓
BH121-5.4-5.5							✓
BH121-6.3-6.45							✓
BH121 -6.9-7							✓
BH122-0.01-0.16							✓

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
BH122-0.2-0.35							✓
BH122-0.7-1							✓
BH122-1.9-2							✓
BH123-0.08-0.2							✓
BH123-0.2-0.5							✓
BH123-0.7-1							✓
BH124 -0.05-0.15							✓
BH124-0.2-0.5							✓
BH124-0.6-1							✓
BH124-1.9-2							✓
BH125-0.12-0.3							✓
BH125-0.35							✓
BH125-0.7-1							✓
BH125-1.9-2							✓
BH126-0-0.2							✓
BH126-0.4-0.5							✓
BH126-0.7-0.95							✓
BH126-1.4-1.5							✓
BH126-1.8-1.95							✓
BH126-2.5-2.6							✓
BH126-3.3-3.45							✓
BH126-3.9-4							✓
BH126 -4.8-4.95							✓
BH126-5.5-5.6							✓
BH126-6.3-6.45							✓
BH126-6.9-7							✓
SDUP105							✓
SDUP106							✓
SDUP107							✓
SDUP108							✓
SDUP112							✓
SDUP113							✓

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	CEC	TCLP Preparation - Acid	Lead	Nickel	PAHs in TCLP (USEPA 1311)	PFAS in TCLP Short	On Hold
TB-S101							✓
BH101 - [TRIPLICATE]-0-0.1							✓
BH121 - [TRIPLICATE]-0-0.2							✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Anna Bui

From:

Brendan Page < BPage@jkenvironments.com.au>

Sent:

Friday, 1 December 2023 9:23 AM

To:

Samplereceipt

Subject:

Additional Analysis Request for Registration 338230 E35614P2, Bankstown

Follow Up Flag:

Follow up

Flag Status:

Flagged

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Morning Team Envirolab,

Could we please order the following additional analysis on the soil samples in Envirolab's custody. Standard TAT:

1) TCLP (acid) prep and leachate analysis for Lead on the following samples:

o BH101 0-0.1

45 o BH113 0-0.2

ELS REF: 338230-A

MT: SMNDARD ENE! MIY23

TCLP (acid) prep and leachate analysis for <u>Nickel</u> on the following samples:

9 o BH103 0.05-0.15

54 o BH115 0.08-0.2

57 o BH116 0.06-0.2

60 0 BH117 0.06-0.2

63 o BH118 0.06-0.2

66 o BH119 0.07-0.2

ጉ o BH122 0.01-0.16

48 o BH123 0.08-0.2

€1 0 BH124 0.05-0.15

49

- 3) TCLP (acid) prep and leachate analysis for PAHs on sample BH114 0-0.1
- 4) TCLP (acid) prep and leachate analysis for PFAS (waste classification purposes) on samples:

o BH101 0-0.1

5 o BH102 0-0.2

(O o BH103 0.2-0.4

13 o BH104 0-0.1

23 o BH107 0-0.2

24 o BH107 0.5-0.7

31 o BH109 0-0.15

32 o BH109 0.2-0.5

35 o BH110 0-0.1

38 o BH111 0-0.1

39 o BH111 0.2-0.5

45 ○ BH113 0-0.2

49 o BH1140-0.1

53 o BH114 1.8-2

(2 0 BH117 1.3-1.5

ヲレ o BH121 0-0.2

73 o BH121 0.4-0.5

77 o BH122 0.7-1

87 0 BH126 0-0.2

5) CEC analysis on samples:

Q o BH103 0.05-0.15

57 0 BH116 0.06-0.2

6 o BH119 0.07-0.2

○ BH124 0.05-0.15

Regards
Brendan Page
Principal | Environmental Scientist
CEnvP (Site Contamination Specialist)

T: +612 9888 5000 D: 0424 193 922

E: <u>bpage@jkenvironments.com.au</u> www.jkenvironments.com.au

PO Box 976 North Ryde BC NSW 1670 115 Wicks Road Macquarie Park NSW 2113

JKEnvironments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned for email related threats and delivered safely by Mimecast. For more information please visit http://www.mimecast.com

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 40805

Client Details	
Client	JK Environments
Attention	Brendan Page
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35614P2
Number of Samples	10 Soil
Date samples received	22/11/2023
Date completed instructions received	22/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	28/11/2023					
Date of Issue	28/11/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Azrin Akram, Senior Chemist Chris De Luca, Assistant Lab Manager Tianna Milburn, Senior Chemist Authorised By

Pamela Adams, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		40805-1	40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP101	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
vTRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
vTRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total BTEX	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	77	88	85	85	88

TRH Soil C10-C40 NEPM						
Our Reference		40805-1	40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP101	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	86	87	86	86	86

PAHs in Soil						
Our Reference		40805-1	40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP101	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.6	0.4	0.2	0.8
Pyrene	mg/kg	<0.1	0.6	0.4	0.3	0.8
Benzo(a)anthracene	mg/kg	<0.1	0.2	0.1	0.1	0.2
Chrysene	mg/kg	<0.1	0.3	0.2	0.2	0.3
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	0.7	0.3	0.3	0.7
Benzo(a)pyrene	mg/kg	<0.05	0.38	0.21	0.19	0.43
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.3	0.2	0.2	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3	0.2	0.2	0.4
Total +ve PAH's	mg/kg	<0.05	3.6	2.2	1.6	4.4
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	0.6	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	0.6	<0.5	<0.5	0.7
Surrogate p-Terphenyl-d ₁₄	%	104	104	104	104	102

OCP in Soil					
Our Reference		40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve reported Aldrin + Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate 2-chlorophenol-d4	%	84	84	82	84

OP in Soil					
Our Reference		40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Azinphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorovos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Methyl Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate 2-chlorophenol-d4	%	84	84	82	84

PCBs in Soil					
Our Reference		40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate 2-fluorobiphenyl	%	98	96	98	96

Acid Extractable metals in soil						
Our Reference		40805-1	40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP101	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Arsenic	mg/kg	<4	<4	6	6	5
Cadmium	mg/kg	<0.4	0.6	0.6	0.8	0.5
Chromium	mg/kg	11	12	20	23	16
Copper	mg/kg	13	16	22	33	23
Lead	mg/kg	11	71	57	56	49
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	8	8	15	8
Zinc	mg/kg	12	59	49	80	40

Moisture						
Our Reference		40805-1	40805-3	40805-4	40805-5	40805-6
Your Reference	UNITS	SDUP101	SDUP103	SDUP104	SDUP105	SDUP106
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023	16/11/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Moisture	%	20	13	10	21	7.5

Moisture					
Our Reference		40805-7	40805-8	40805-9	40805-10
Your Reference	UNITS	SDUP101 (PFAS)	SDUP102 (PFAS)	SDUP103 (PFAS)	SDUP104 (PFAS)
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Moisture	%	20	12	11	12

PFAS in Soil Short					
Our Reference		40805-7	40805-8	40805-9	40805-10
Your Reference	UNITS	SDUP101 (PFAS)	SDUP102 (PFAS)	SDUP103 (PFAS)	SDUP104 (PFAS)
Date Sampled		15/11/2023	15/11/2023	15/11/2023	15/11/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	23/11/2023	23/11/2023	23/11/2023	23/11/2023
Date analysed	-	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Perfluorohexanesulfonic acid PFHxS	μg/kg	<0.1	0.7	0.5	1.6
Perfluorooctanesulfonic acid PFOS	μg/kg	<0.1	4.2	4.3	2.7
Perfluorooctanoic acid PFOA	μg/kg	<0.1	0.4	0.2	0.2
6:2 FTS	μg/kg	<0.1	<0.1	<0.1	<0.1
8:2 FTS	μg/kg	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	99	101	99	104
Surrogate ¹³ C ₂ PFOA	%	95	95	93	92
Extracted ISTD 18 O2 PFHxS	%	92	93	97	93
Extracted ISTD 13 C4 PFOS	%	96	95	102	94
Extracted ISTD 13 C4 PFOA	%	98	101	108	102
Extracted ISTD ¹³ C ₂ 6:2FTS	%	97	108	122	107
Extracted ISTD 13 C ₂ 8:2FTS	%	97	122	151	124
Total Positive PFHxS & PFOS	μg/kg	<0.1	4.9	4.8	4.3
Total Positive PFOS & PFOA	μg/kg	<0.1	4.6	4.5	2.9
Total Positive PFAS	μg/kg	<0.1	5.3	5.0	4.5

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105°C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or analysed by GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, For OCs the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore"="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLP/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3. Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
Date analysed	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
vTRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	90		
vTRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	90		
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	83		
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	89		
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	92		
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	92		
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	91		
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-023	81	[NT]		[NT]	[NT]	82		

QUALITY CON	NTROL: TRH	Soil C10	C40 NEPM			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023	
Date analysed	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	92	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	91	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	80	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	92	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	91	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	80	
Surrogate o-Terphenyl	%		Org-020	91	[NT]		[NT]	[NT]	85	

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
Date analysed	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Benzo(b,j&k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	92		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	96	[NT]		[NT]	[NT]	96		

QUA	LITY CONTRO	DL: OCP i	n Soil			Du	plicate	_	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
Date analysed	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023		
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
Hexachlorobenzene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88		
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86		
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90		
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88		
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88		
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate 2-chlorophenol-d4	%		Org-022/025	80	[NT]		[NT]	[NT]	88		

QUA	LITY CONTR	OL: OP ir	n Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	40805-4	
Date extracted	-			23/11/2023	3	23/11/2023	23/11/2023		23/11/2023	23/11/2023	
Date analysed	-			23/11/2023	3	23/11/2023	23/11/2023		23/11/2023	23/11/2023	
Azinphos-methyl	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyrifos	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	92	96	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	92	99	
Diazinon	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	96	102	
Dichlorovos	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	96	111	
Fenitrothion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	84	99	
Malathion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Coumaphos	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Disulfoton	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Fenamiphos	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Fenthion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Methidathion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Mevinphos	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Methyl Parathion	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Phorate	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Phosalone	mg/kg	0.1	Org-022	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Surrogate 2-chlorophenol-d4	%		Org-022/025	80	3	84	86	2	88	86	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023	
Date analysed	-			23/11/2023	[NT]		[NT]	[NT]	23/11/2023	
Aroclor 1016	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Aroclor 1260	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 2-fluorobiphenyl	%		Org-022/025	98	[NT]		[NT]	[NT]	98	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Duplicate Spike Rec				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	40805-6
Date digested	-			23/11/2023	1	23/11/2023	23/11/2023		23/11/2023	23/11/2023
Date analysed	-			24/11/2023	1	24/11/2023	24/11/2023		24/11/2023	24/11/2023
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	1	<4	5	22	103	103
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	1	<0.4	<0.4	0	102	94
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	1	11	12	9	102	104
Copper	mg/kg	1	Metals-020 ICP- AES	<1	1	13	12	8	106	116
Lead	mg/kg	1	Metals-020 ICP- AES	<1	1	11	14	24	100	93
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	1	<0.1	<0.1	0	100	92
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	1	3	2	40	102	100
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	1	12	8	40	99	97

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]			
Date digested	-				6	23/11/2023	23/11/2023			[NT]			
Date analysed	-				6	24/11/2023	24/11/2023			[NT]			
Arsenic	mg/kg	4	Metals-020 ICP- AES		6	5	5	0		[NT]			
Cadmium	mg/kg	0.4	Metals-020 ICP- AES		6	0.5	0.4	22		[NT]			
Chromium	mg/kg	1	Metals-020 ICP- AES		6	16	21	27		[NT]			
Copper	mg/kg	1	Metals-020 ICP- AES		6	23	23	0		[NT]			
Lead	mg/kg	1	Metals-020 ICP- AES		6	49	43	13		[NT]			
Mercury	mg/kg	0.1	Metals-021 CV-AAS		6	<0.1	<0.1	0		[NT]			
Nickel	mg/kg	1	Metals-020 ICP- AES		6	8	13	48		[NT]			
Zinc	mg/kg	1	Metals-020 ICP- AES	[NT]	6	40	48	18	[NT]	[NT]			

QUALITY	CONTROL: I	PFAS in S	Soil Short			Duplicate Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]			
Perfluorohexanesulfonic acid PFHxS	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	97	[NT]			
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	99	[NT]			
Perfluorooctanoic acid PFOA	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	91	[NT]			
6:2 FTS	μg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	98	[NT]			
8:2 FTS	μg/kg	0.2	Org-029	<0.2	[NT]		[NT]	[NT]	99	[NT]			
Surrogate ¹³ C ₈ PFOS	%		Org-029	106	[NT]		[NT]	[NT]	109	[NT]			
Surrogate ¹³ C ₂ PFOA	%		Org-029	97	[NT]		[NT]	[NT]	97	[NT]			
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	98	[NT]		[NT]	[NT]	96	[NT]			
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	98	[NT]		[NT]	[NT]	98	[NT]			
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	101	[NT]		[NT]	[NT]	103	[NT]			
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	96	[NT]		[NT]	[NT]	103	[NT]			
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	96	[NT]		[NT]	[NT]	101	[NT]			

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 40805

Revision No: R00

Page | 22 of 23

Report Comments

Sample jar # 2 received broken and material was unretrievable. Testing will not commence for this sample.

METALS: The RPD for duplicate results 40805-6 for Nickel is accepted due to the inhomogeneous nature of the sample/s. Triplicate analysis confirms this and is available upon request.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 40805 Page | 23 of 23

Revision No: R00

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633

melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Brendan Page

Sample Login Details	
Your reference	E35614P2
Envirolab Reference	40805
Date Sample Received	22/11/2023
Date Instructions Received	22/11/2023
Date Results Expected to be Reported	28/11/2023

Sample Condition	
Samples received in appropriate condition for analysis	No, Broken Sample
No. of Samples Provided	10 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	20.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Sample jar # 2 received broken and material was unretrievable. Testing will not commence for this sample.

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoiced accordingly.

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	OCP in Soil	OP in Soil	PCBsin Soil	Acid Extractable metalsin soil	PFAS in Soil Short	On Hold
SDUP101	✓	✓	✓				✓		
SDUP102									✓
SDUP103	✓	✓	✓	✓	✓	✓	✓		
SDUP104	✓	✓	✓	✓	✓	✓	✓		
SDUP105	✓	✓	✓	✓	✓	✓	✓		
SDUP106	✓	✓	✓	✓	✓	✓	✓		
SDUP101 (PFAS)								✓	
SDUP102 (PFAS)								✓	
SDUP103 (PFAS)								✓	
SDUP104 (PFAS)								✓	

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u>											FROM:	FROM:											
ENVIROLAB SEI		PTY LTD		JKE Job Number:	-				•	~													
CHATSWOOD N		67		Number	i							J	KE	'nv	irc	nn	nei	nts					
P: (02) 9910620		•		Date Res	ults	STANDARD					REAR C)F 115	WICK	S RO	ΔD								
F: (02) 9910620				Required	i:						MACQ					ļ							
											P: 02-9	888 5	000		F: 02	-9888	5001						
Attention: Aile	en			Page:		4 of 12					Attenti	on:	_		•	an Pag	ents.com.au ervices o Drive 0 3 36 3 2 500						
				w =-							1.0					ment	s.com	<u>.au</u>					
Location:	Banks	town		<u> </u>		* * *				Sar	nple Pre) ice			_					
Sampler:	AD/LR	<u> </u>	-	T	1	<u> </u>	4			1	Tests Required												
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 6aNEPM	Combo 6	Combo 6a	Combo 3	Asbestos (detection)	втех											
17/11/2023	76	BH122	0.2-0.35	G, A	1.6	F: Gravelly Sand	Х																
17/11/2023	77	BH122	0.7-1.0	G, A	3.1	Silty Clay				X													
17/11/2023	78	BH123	0.08-0.2	G, A	1.4	F: Gravelly Sand	Х		<u> </u>		m1	_				<u> </u>							
17/11/2023	79	BH123	0.2-0.5	G, Ø	. 1.1	F: Clayey Sand	Х																
17/11/2023	80	BH123	0.7-1.0	G, A	0.9	Silty Clay			_	Х	Er	VIRO	ĤВ С	25	Rese.	rch D	live	<u> </u>					
17/11/2023	81	BH124	0.05-0.15	G, A	1.7	F: Gravelly Sand	Х		<u> </u>		با	ob N₁		Pf	: (03)	763 2.	36	<u> </u>					
17/11/2023	82	BH124	0.2-0.5	G, A	1.4	F: Clayey Sand	Х		<u> </u>				ceive	08 ?	Lil	Γ	<u> </u>	<u> </u>					
17/11/2023	83	ВН124	0.6-1.0	G, Ä	2.1	Silty Clay				X	Tit	ne Re	ceivei	ιŌ	11112 13C	W	 	_					
17/11/2023	84	BH125	0.12-0.3	G, A	1.2	F: Gravelly Sand	Х		ļ	ļ .	Te	up: C	J By: ₁ pol/A r	ben		\ar	} ~	4					
17/11/2023	82	BH125	0.3-0.5	G, A	1.4	F: Clayey Sand	X		_	ļ	Co Se	oling:	Ice/lo	pack	b bo/No	14	1. L	\vdash					
17/11/2023	86	BH125	0.7-1.0	G, A	13	Silty Clay			<u> </u>	Х				JETON.	11/110	<u> </u>		╀					
17/11/2023	87	BH126	0-0.2	G, A	10.8	F: Silty Sand	Х		-		<u> </u>			نه:		—	╀	1					
17/11/2023	88	BH126	0.4-0.5	G, A	9.7	F: Silty Clay	Х				'			دي.			┼	┼-					
17/11/2023	89	вн126	0.7-0:95	G, A	9.7	Silty Clay	-		ļ	X		· ·				├	\vdash	╁					
15/11/2023	## .	SDUP101	-	G	<u>-</u>	Soil Duplicate			1	X		Pet	YW)	مها ا	₩	₩	├-					
15/11/2023	##	SDUP102	-	G	-	Soil Duplicate				X			1620	JB	75		┿	 					
15/11/2023	##	SDUP103	<u> -</u>	G	·-	Soil Duplicate		X	 	ļ ,	ļ	1x	/h	(1) (1)		₩	+	 					
15/11/2023	##	SDUP104	-	G	-	Soil Duplicate	<u> </u>	X	ļ	<u> </u>				9	_	╀	┼	1					
15/11/2023	##	SDUP105	-	G	-	Soil Duplicate	-	X	ļ .	1			ļ	ļ.,		├	\vdash	 					
16/11/2023	#	SDUP106		G	-	Soil Duplicate	-	Х		\			<u> </u>		-	├—	┼	+					
16/11/2023	90	SDUP107	-	G	-	Soil Duplicate				X			4		1	├-	\vdash	+					
16/11/2023	91	SDUP108	 -	G	-	Soil Duplicate		_		Х				-	<u> </u>	┼	+-	+					
17/11/2023	92	SDUP109	 -	G	-	Soil Duplicate	+	X	ļ.,	-			ļ ·	-	-	 	+	+					
16/11/2023	93	SDUP110	-	G	-	Soil Duplicate	-	X	 				<u> </u>	_	-	├	\vdash	+					
16/11/2023 Remarks (comm	94	<u> </u>	ite required).	G	-	Soil Duplicate	6	X	ntain	arc:	<u> </u>		<u> </u>		<u> </u>	Щ	┸-						
	_	Batch	its required): 1 quote #23SY dup to Melbo	_		· 	G - 2! A - Zi	50mg	Glass Asbe	Jar													
Relinquished B	y: BP			Date: 20	.11.23		Time	: 1pm	1		Receiv	red By	:			Date	ı i						

	то:				SAMP	LE ANI	D CHAIN OF	CUST	<u>OD\</u>	' FO	<u>RM</u>	FROM	:						
	ENVIROLAB SER		PTY LTD		JKE Job Number:		E35614P2	-						く	_	_			
	1			ate Results STANDARD				JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001											
	Attention: Aileen				Page: 12 of 12					Attent		000	E		F: 02-9888 5001 Tendan Page				
	Location:	Banks	town, NSW		<u>. </u>		 				San	ple Pre	serve	ved in Esky on Ice Required					
	Sampler:	AD/LR		· · · · · · · · · · · · · · · · · · ·	· -		1.51			_		Te	sts Re	quired	:d				
	Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	PFAS (short suite)		,									
	17.11.2023	247	вн126	4.8-4.95	PFAS	-	Silty Clay												
	17.11.2023	248	BH126	5.5-5.6	PFAS		Silty Clay												
	17.11.2023	279	вн126	6.3-6.45	PFAS	_	Silty Clay												
	17.11.2023	250	BH126	6.9-7	PFAS		Silty Clay			-					. "	,			
7	15/11/2023	##	SDUP101	_	PFAS	_	Soil Duplicate	Х											
8	15/11/2023	##	SDUP102	_	PFAS	-	Soil Duplicate	Χ											
9	15/11/2023	##	SDUP103	-	PFAS	-	Soil Duplicate	Х											_
10	15/11/2023	##	SDUP104	_	PFAS	_	Soil Duplicate	Х						•	·		, i		
	15/11/2023	251	SDUP105	-	PFAS	-	Soil Duplicate	Х											
	16/11/2023	252	SDUP106		PFAS -		-Soil Duplicate	Х			-		,		-				
	16/11/2023	253	SDUP107	_	PFAS	-	Soil Duplicate	Х											
	16/11/2023	254	SDUP108	_	PFAS	-	Soil Duplicate		* -				-					,	
	16/11/2023	285	SDUP112	-	PFAS	-	Soil Duplicate	Х											
	17/11/2023		SDUP113	-	PFAS		Soil Duplicate		,		.)							1	
	15-17/11/23		TB-S101	-	PFAS	-	Trip Blank	X								,			
				_		:		:	-									1	
							1111												
			-	0	oliwak	zhed	by Hollyt												
				1	60	5 34)	A CONTRACTOR												
					21/	4 (1	45	-											
						y	65		-		-		<u> </u>					<u> </u>	acksquare
			-	,	- :												T		
	<u> </u>		·i	 							<u> </u>		+		-		\vdash	-	H
ı					:	-	,		:	-	-		+		1 .,	 	+	-	-
							<u> </u>	-	-			-			 -	<u>:</u>	1	-	H
	Remarks (comm	<u>l</u> nents/d	Batch o	uote #23SY51			l	Sample G - 250 A - Zipl	mg Gl ock A	ass Ja sbesto	r os Bag	1	l	!	<u> </u>	<u> </u>	1	1	<u> </u>
	Relinquished By	r: BP	## inter-lab	dup to Melbo	Date: 20.			PFAS -		<u>Conta</u>	iner	Recei	ved By	r.			Date	3:	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 338704

Client Details	
Client	JK Environments
Attention	Brendan Page
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35614P2, Bankstown
Number of Samples	8 Water
Date samples received	27/11/2023
Date completed instructions received	27/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	04/12/2023					
Date of Issue	04/12/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Amanda Chui, Air Toxics Team Leader Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Liam Timmins, Organics Supervisor Loren Bardwell, Development Chemist Sean McAlary, Chemist Tim Toll, Chemist (FAS)

Authorised By

Nancy Zhang, Laboratory Manager

PFAS in Waters Trace Extended						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023
Date analysed	-	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023
Perfluorobutanesulfonic acid	μg/L	0.026	<0.0004	0.0099	0.017	0.0064
Perfluoropentanesulfonic acid	μg/L	0.027	<0.001	0.003	0.013	0.006
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.14	<0.0002	0.0073	0.018	0.019
Perfluoroheptanesulfonic acid	μg/L	0.001	<0.001	0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	μg/L	0.0031	<0.0002	0.038	0.002	0.011
Perfluorodecanesulfonic acid	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorobutanoic acid	μg/L	<0.02	<0.02	<0.02	<0.01	<0.002
Perfluoropentanoic acid	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorohexanoic acid	μg/L	0.002	<0.0004	0.003	<0.0004	0.0051
Perfluoroheptanoic acid	μg/L	<0.0004	<0.0004	<0.0004	<0.0004	0.0005
Perfluorooctanoic acid PFOA	μg/L	0.0004	<0.0002	0.0008	0.0002	0.0006
Perfluorononanoic acid	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorodecanoic acid	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	μg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorotetradecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
4:2 FTS	μg/L	<0.001	<0.001	<0.001	<0.001	<0.001
6:2 FTS	μg/L	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
8:2 FTS	μg/L	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
10:2 FTS	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonamide	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Surrogate ¹³ C ₈ PFOS	%	101	100	103	96	104
Surrogate ¹³ C ₂ PFOA	%	103	101	103	99	101
Extracted ISTD 13 C3 PFBS	%	72	66	64	56	68
Extracted ISTD 18 O2 PFHxS	%	94	72	78	62	78
Extracted ISTD 13 C4 PFOS	%	66	80	75	70	73
Extracted ISTD 13 C ₄ PFBA	%	33	#	#	29	51

PFAS in Waters Trace Extended						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD 13 C3 PFPeA	%	77	43	49	68	89
Extracted ISTD 13 C2 PFHxA	%	81	63	71	68	85
Extracted ISTD ¹³ C ₄ PFHpA	%	80	78	81	70	87
Extracted ISTD 13 C4 PFOA	%	109	117	115	95	117
Extracted ISTD 13 C ₅ PFNA	%	88	89	88	76	84
Extracted ISTD 13 C2 PFDA	%	80	99	97	81	93
Extracted ISTD 13 C2 PFUnDA	%	80	102	96	91	101
Extracted ISTD 13 C2 PFDoDA	%	81	110	104	90	93
Extracted ISTD 13 C2 PFTeDA	%	84	88	96	79	92
Extracted ISTD 13 C2 4:2FTS	%	105	107	134	97	115
Extracted ISTD ¹³ C ₂ 6:2FTS	%	185	#	158	137	186
Extracted ISTD 13 C2 8:2FTS	%	107	154	129	135	148
Extracted ISTD 13 C8 FOSA	%	55	58	68	60	65
Extracted ISTD d ₃ N MeFOSA	%	88	90	100	80	100
Extracted ISTD ds N EtFOSA	%	86	82	89	71	95
Extracted ISTD d ₇ N MeFOSE	%	94	97	98	93	104
Extracted ISTD d ₉ N EtFOSE	%	82	76	78	70	81
Extracted ISTD d ₃ N MeFOSAA	%	86	109	94	91	98
Extracted ISTD ds N EtFOSAA	%	83	116	101	91	101
Total Positive PFHxS & PFOS	μg/L	0.14	<0.0002	0.046	0.020	0.030
Total Positive PFOS & PFOA	μg/L	0.0035	<0.0002	0.039	0.002	0.012
Total Positive PFAS	μg/L	0.20	<0.0002	0.064	0.050	0.049

Envirolab Reference: 338704

Revision No: R00

PFAS in Waters Trace Extended		
Our Reference		338704-6
Your Reference	UNITS	WDUP101
Date Sampled		24/11/2023
Type of sample		Water
Date prepared	-	01/12/2023
Date analysed	-	01/12/2023
Perfluorobutanesulfonic acid	μg/L	0.0066
Perfluoropentanesulfonic acid	μg/L	0.006
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.018
Perfluoroheptanesulfonic acid	μg/L	<0.001
Perfluorooctanesulfonic acid PFOS	μg/L	0.011
Perfluorodecanesulfonic acid	μg/L	<0.002
Perfluorobutanoic acid	μg/L	<0.002
Perfluoropentanoic acid	μg/L	<0.002
Perfluorohexanoic acid	μg/L	0.0055
Perfluoroheptanoic acid	μg/L	0.0005
Perfluorooctanoic acid PFOA	μg/L	0.0005
Perfluorononanoic acid	μg/L	<0.001
Perfluorodecanoic acid	μg/L	<0.002
Perfluoroundecanoic acid	μg/L	<0.002
Perfluorododecanoic acid	μg/L	<0.005
Perfluorotridecanoic acid	μg/L	<0.01
Perfluorotetradecanoic acid	μg/L	<0.05
4:2 FTS	μg/L	<0.001
6:2 FTS	μg/L	<0.0004
8:2 FTS	μg/L	<0.0004
10:2 FTS	μg/L	<0.002
Perfluorooctane sulfonamide	μg/L	<0.01
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.002
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.002
Surrogate ¹³ C ₈ PFOS	%	110
Surrogate ¹³ C ₂ PFOA	%	100
Extracted ISTD 13 C3 PFBS	%	69
Extracted ISTD 18 O2 PFHxS	%	81
Extracted ISTD 13 C4 PFOS	%	68
Extracted ISTD 13 C4 PFBA	%	48

PFAS in Waters Trace Extended		
Our Reference		338704-6
Your Reference	UNITS	WDUP101
Date Sampled		24/11/2023
Type of sample		Water
Extracted ISTD 13 C3 PFPeA	%	88
Extracted ISTD 13 C ₂ PFHxA	%	85
Extracted ISTD 13 C4 PFHpA	%	88
Extracted ISTD 13 C4 PFOA	%	122
Extracted ISTD 13 C ₅ PFNA	%	86
Extracted ISTD 13 C ₂ PFDA	%	92
Extracted ISTD 13 C2 PFUnDA	%	96
Extracted ISTD 13 C2 PFDoDA	%	94
Extracted ISTD 13 C ₂ PFTeDA	%	90
Extracted ISTD 13 C ₂ 4:2FTS	%	106
Extracted ISTD ¹³ C ₂ 6:2FTS	%	#
Extracted ISTD 13 C2 8:2FTS	%	124
Extracted ISTD 13 C8 FOSA	%	64
Extracted ISTD d ₃ N MeFOSA	%	95
Extracted ISTD d ₅ N EtFOSA	%	87
Extracted ISTD d ₇ N MeFOSE	%	99
Extracted ISTD d ₉ N EtFOSE	%	77
Extracted ISTD d ₃ N MeFOSAA	%	88
Extracted ISTD ds N EtFOSAA	%	94
Total Positive PFHxS & PFOS	μg/L	0.029
Total Positive PFOS & PFOA	μg/L	0.011
Total Positive PFAS	μg/L	0.048

PFAS in Waters Short		
Our Reference		338704-7
Your Reference	UNITS	TB-W101
Date Sampled		24/11/2023
Type of sample		Water
Date prepared	-	01/12/2023
Date analysed	-	01/12/2023
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01
Perfluorooctanesulfonic acid PFOS	μg/L	<0.01
Perfluorooctanoic acid PFOA	μg/L	<0.01
6:2 FTS	μg/L	<0.01
8:2 FTS	μg/L	<0.02
Surrogate ¹³ C ₈ PFOS	%	104
Surrogate ¹³ C ₂ PFOA	%	109
Extracted ISTD 18 O ₂ PFHxS	%	106
Extracted ISTD 13 C4 PFOS	%	97
Extracted ISTD 13 C4 PFOA	%	101
Extracted ISTD 13 C2 6:2FTS	%	107
Extracted ISTD 13 C ₂ 8:2FTS	%	126
Total Positive PFHxS & PFOS	μg/L	<0.01
Total Positive PFOA & PFOS	μg/L	<0.01
Total Positive PFAS	μg/L	<0.01

VOCs in water						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date Extracted	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Date Analysed	-	30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
Dichlorodifluoromethane	μg/L	<10	<10	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1	<1	<1
Chloroform	μg/L	<1	<1	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1	<1	<1
Benzene	μg/L	<1	<1	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1

VOCs in water						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	97	100	98	97	100
Surrogate Toluene-d8	%	101	101	98	98	100
Surrogate 4-Bromofluorobenzene	%	103	103	104	103	103

VOCs in water		
Our Reference		338704-6
Your Reference	UNITS	WDUP101
Date Sampled		24/11/2023
Type of sample		Water
Date Extracted	-	29/11/2023
Date Analysed	-	30/11/2023
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	μg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	μg/L	<1
Chloroform	μg/L	<1
2,2-dichloropropane	μg/L	<1
1,2-dichloroethane	μg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	μg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	μg/L	<1
Ethylbenzene	μg/L	<1

VOCs in water		
Our Reference		338704-6
Your Reference	UNITS	WDUP101
Date Sampled		24/11/2023
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	μg/L	<2
Styrene	μg/L	<1
1,1,2,2-tetrachloroethane	μg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	μg/L	<1
Isopropylbenzene	μg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	μg/L	<1
2-chlorotoluene	μg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	μg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	μg/L	<1
1,3-dichlorobenzene	μg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	μg/L	<1
1,2-dichlorobenzene	μg/L	<1
n-butyl benzene	μg/L	<1
1,2-dibromo-3-chloropropane	μg/L	<1
1,2,4-trichlorobenzene	μg/L	<1
Hexachlorobutadiene	μg/L	<1
1,2,3-trichlorobenzene	μg/L	<1
Surrogate Dibromofluoromethane	%	98
Surrogate Toluene-d8	%	102
Surrogate 4-Bromofluorobenzene	%	103

Envirolab Reference: 338704

Revision No: R00

vTRH(C6-C10)/BTEXN in Water						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Date analysed	-	30/11/2023	30/11/2023	30/11/2023	30/11/2023	30/11/2023
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	97	100	98	97	100
Surrogate Toluene-d8	%	101	101	98	98	100
Surrogate 4-Bromofluorobenzene	%	103	103	104	103	103

vTRH(C6-C10)/BTEXN in Water				
Our Reference		338704-6	338704-7	338704-8
Your Reference	UNITS	WDUP101	TB-W101	TS-W101
Date Sampled		24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water
Date extracted	-	29/11/2023	29/11/2023	29/11/2023
Date analysed	-	30/11/2023	30/11/2023	30/11/2023
TRH C ₆ - C ₉	μg/L	<10	<10	[NA]
TRH C ₆ - C ₁₀	μg/L	<10	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	[NA]
Benzene	μg/L	<1	<1	93%
Toluene	μg/L	<1	<1	115%
Ethylbenzene	μg/L	<1	<1	111%
m+p-xylene	μg/L	<2	<2	111%
o-xylene	μg/L	<1	<1	118%
Naphthalene	μg/L	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	98	96	99
Surrogate Toluene-d8	%	102	98	101
Surrogate 4-Bromofluorobenzene	%	103	102	103

svTRH (C10-C40) in Water						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	65	78	85	78	90

svTRH (C10-C40) in Water			
Our Reference		338704-6	338704-7
Your Reference	UNITS	WDUP101	TB-W101
Date Sampled		24/11/2023	24/11/2023
Type of sample		Water	Water
Date extracted	-	29/11/2023	29/11/2023
Date analysed	-	29/11/2023	29/11/2023
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	160
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	160
TRH >C ₁₀ - C ₁₆	μg/L	<50	160
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	160
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	160
Surrogate o-Terphenyl	%	77	77

PAHs in Water						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Date analysed	-	01/12/2023	01/12/2023	01/12/2023	01/12/2023	01/12/2023
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	62	89	86	83	84

Envirolab Reference: 338704 Revision No: R00

Page | 13 of 33

PAHs in Water			
Our Reference		338704-6	338704-7
Your Reference	UNITS	WDUP101	TB-W101
Date Sampled		24/11/2023	24/11/2023
Type of sample		Water	Water
Date extracted	-	29/11/2023	29/11/2023
Date analysed	-	01/12/2023	01/12/2023
Naphthalene	μg/L	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	85	83

HM in water - dissolved						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/11/2023	28/11/2023	28/11/2023	28/11/2023	28/11/2023
Date analysed	-	28/11/2023	28/11/2023	28/11/2023	28/11/2023	28/11/2023
Arsenic-Dissolved	μg/L	<1	10	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	0.2	0.2	0.2	<0.1
Chromium-Dissolved	μg/L	<1	2	<1	<1	<1
Copper-Dissolved	μg/L	<1	17	3	2	5
Lead-Dissolved	μg/L	<1	14	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	380	19	6	5
Zinc-Dissolved	μg/L	8	580	20	19	21

HM in water - dissolved			
Our Reference		338704-6	338704-7
Your Reference	UNITS	WDUP101	TB-W101
Date Sampled		24/11/2023	24/11/2023
Type of sample		Water	Water
Date prepared	-	28/11/2023	28/11/2023
Date analysed	-	28/11/2023	28/11/2023
Arsenic-Dissolved	μg/L	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	5	<1
Lead-Dissolved	μg/L	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	5	<1
Zinc-Dissolved	μg/L	20	2

Miscellaneous Inorganics						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
Date analysed	-	27/11/2023	27/11/2023	27/11/2023	27/11/2023	27/11/2023
рН	pH Units	7.1	4.4	6.4	6.3	6.4
Electrical Conductivity	μS/cm	21,000	27,000	30,000	22,000	30,000

Cations in water Dissolved						
Our Reference		338704-1	338704-2	338704-3	338704-4	338704-5
Your Reference	UNITS	MW102	MW107	MW114	MW121	MW126
Date Sampled		24/11/2023	24/11/2023	24/11/2023	24/11/2023	24/11/2023
Type of sample		Water	Water	Water	Water	Water
Date digested	-	28/11/2023	28/11/2023	28/11/2023	28/11/2023	28/11/2023
Date analysed	-	29/11/2023	29/11/2023	29/11/2023	29/11/2023	29/11/2023
Calcium - Dissolved	mg/L	67	22	78	26	140
Magnesium - Dissolved	mg/L	670	730	870	510	1,000
Hardness	mgCaCO 3 /L	2,900	3,100	3,800	2,100	4,500

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONTR	OL: PFAS ir	n Waters	Trace Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			01/12/2023	[NT]		[NT]	[NT]	01/12/2023	
Date analysed	-			01/12/2023	[NT]		[NT]	[NT]	01/12/2023	
Perfluorobutanesulfonic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	103	
Perfluoropentanesulfonic acid	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	105	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	100	
Perfluoroheptanesulfonic acid	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	101	
Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	103	
Perfluorodecanesulfonic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	92	
Perfluorobutanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	102	
Perfluoropentanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	99	
Perfluorohexanoic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	106	
Perfluoroheptanoic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	105	
Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	96	
Perfluorononanoic acid	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	117	
Perfluorodecanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	92	
Perfluoroundecanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	105	
Perfluorododecanoic acid	μg/L	0.005	Org-029	<0.005	[NT]		[NT]	[NT]	96	
Perfluorotridecanoic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	109	
Perfluorotetradecanoic acid	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	105	
4:2 FTS	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	104	
6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	86	
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	120	
10:2 FTS	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	107	
Perfluorooctane sulfonamide	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	106	
N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	109	
N-Ethyl perfluorooctanesulfon amide	μg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	117	
N-Me perfluorooctanesulfonamid oethanol	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	99	
N-Et perfluorooctanesulfonamid oethanol	μg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	106	
MePerfluorooctanesulf- amid oacetic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	106	
EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	108	
Surrogate ¹³ C ₈ PFOS	%		Org-029	101	[NT]		[NT]	[NT]	109	
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	103	

QUALITY CONTR	OL: PFAS ir	Waters •	Trace Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	72	[NT]		[NT]	[NT]	77	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	74	[NT]		[NT]	[NT]	83	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	67	[NT]		[NT]	[NT]	72	
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	88	[NT]		[NT]	[NT]	102	
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	74	[NT]		[NT]	[NT]	86	
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	83	[NT]		[NT]	[NT]	89	
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	83	[NT]		[NT]	[NT]	89	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	99	[NT]		[NT]	[NT]	108	
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	82	[NT]		[NT]	[NT]	92	
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	83	[NT]		[NT]	[NT]	97	
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	93	[NT]		[NT]	[NT]	103	
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	90	[NT]		[NT]	[NT]	97	
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	75	[NT]		[NT]	[NT]	80	
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	112	[NT]		[NT]	[NT]	131	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	155	[NT]		[NT]	[NT]	189	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	121	[NT]		[NT]	[NT]	144	
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	64	[NT]		[NT]	[NT]	76	
Extracted ISTD d ₃ N MeFOSA	%		Org-029	84	[NT]		[NT]	[NT]	85	
Extracted ISTD d ₅ N EtFOSA	%		Org-029	81	[NT]		[NT]	[NT]	82	
Extracted ISTD d ₇ N MeFOSE	%		Org-029	92	[NT]		[NT]	[NT]	98	

QUALITY CONTR	OL: PFAS ir	Waters	Trace Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	82	[NT]		[NT]	[NT]	81	
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	79	[NT]		[NT]	[NT]	94	
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	84	[NT]	[NT]	[NT]	[NT]	95	[NT]

Envirolab Reference: 338704

QUALITY C	ONTROL: P	FAS in Wa	aters Short			Du	ıplicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			01/12/2023	[NT]		[NT]	[NT]	01/12/2023	
Date analysed	-			01/12/2023	[NT]		[NT]	[NT]	01/12/2023	
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	105	
Perfluorooctanesulfonic acid PFOS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	105	
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	107	
6:2 FTS	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	98	
8:2 FTS	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	108	
Surrogate ¹³ C ₈ PFOS	%		Org-029	98	[NT]		[NT]	[NT]	96	
Surrogate ¹³ C ₂ PFOA	%		Org-029	104	[NT]		[NT]	[NT]	105	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	97	[NT]		[NT]	[NT]	100	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	100	[NT]		[NT]	[NT]	100	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	100	[NT]		[NT]	[NT]	102	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	115	[NT]		[NT]	[NT]	113	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	136	[NT]		[NT]	[NT]	136	

Envirolab Reference: 338704 Revision No: R00 Page | **22 of 33**

QUALIT	Y CONTROL	.: VOCs i	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W6	[NT]
Date Extracted	-			29/11/2023	1	29/11/2023	29/11/2023		29/11/2023	
Date Analysed	-			30/11/2023	1	30/11/2023	30/11/2023		30/11/2023	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Bromomethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloroethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	105	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	1	<1	<1	0	106	
2,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	105	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	107	
1,1-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	107	
Dibromomethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	120	
Bromodichloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	107	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	107	
1,3-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	107	
1,2-dibromoethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	109	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	112	
Bromoform	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	114	
Styrene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	

QUALIT`	Y CONTROI	_: VOCs ii	n water			Du	uplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W6	[NT]
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	114	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Sec-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-isopropyl toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	99	1	97	124	24	98	
Surrogate Toluene-d8	%		Org-023	98	1	101	98	3	101	
Surrogate 4-Bromofluorobenzene	%		Org-023	102	1	103	94	9	103	

Envirolab Reference: 338704

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W6	[NT]
Date extracted	-			29/11/2023	1	29/11/2023	29/11/2023		29/11/2023	
Date analysed	-			30/11/2023	1	30/11/2023	30/11/2023		30/11/2023	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	111	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	111	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	107	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	107	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	112	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	114	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	114	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	99	1	97	124	24	98	
Surrogate Toluene-d8	%		Org-023	98	1	101	98	3	101	
Surrogate 4-Bromofluorobenzene	%		Org-023	102	1	103	94	9	103	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	338704-2
Date extracted	-			29/11/2023	1	29/11/2023	29/11/2023		29/11/2023	29/11/2023
Date analysed	-			29/11/2023	1	29/11/2023	29/11/2023		29/11/2023	29/11/2023
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	94	92
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	97	99
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	100	116
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	94	92
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	97	99
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	100	116
Surrogate o-Terphenyl	%		Org-020	75	1	65	83	24	82	85

QUAL	ITY CONTRO	_: PAHs ir	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	338704-2
Date extracted	-			29/11/2023	1	29/11/2023	29/11/2023		29/11/2023	29/11/2023
Date analysed	-			01/12/2023	1	01/12/2023	01/12/2023		01/12/2023	01/12/2023
Naphthalene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	105
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	94
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	111
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	95
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	94
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	92
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	91
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	117
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	92	1	62	93	40	91	94

QUALITY CO	NTROL: HN	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	338704-2
Date prepared	-			28/11/2023	1	28/11/2023	28/11/2023		28/11/2023	28/11/2023
Date analysed	-			28/11/2023	1	28/11/2023	28/11/2023		28/11/2023	28/11/2023
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	95
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	95
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	94	107
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	1	0	95	98
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	80
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		97	[NT]
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	1	0	99	#
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	8	8	0	102	#

QUALITY CO	QUALITY CONTROL: HM in water - dissolved							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	338704-3		
Date prepared	-			[NT]	2	28/11/2023	28/11/2023			28/11/2023		
Date analysed	-			[NT]	2	28/11/2023	28/11/2023			28/11/2023		
Arsenic-Dissolved	μg/L	1	Metals-022	[NT]	2	10	[NT]			[NT]		
Cadmium-Dissolved	μg/L	0.1	Metals-022	[NT]	2	0.2	[NT]			[NT]		
Chromium-Dissolved	μg/L	1	Metals-022	[NT]	2	2	[NT]			[NT]		
Copper-Dissolved	μg/L	1	Metals-022	[NT]	2	17	[NT]			[NT]		
Lead-Dissolved	μg/L	1	Metals-022	[NT]	2	14	[NT]			[NT]		
Mercury-Dissolved	μg/L	0.05	Metals-021	[NT]	2	<0.05	<0.05	0		108		
Nickel-Dissolved	μg/L	1	Metals-022	[NT]	2	380	[NT]			[NT]		
Zinc-Dissolved	μg/L	1	Metals-022	[NT]	2	580	[NT]			[NT]		

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			27/11/2023	5	27/11/2023	27/11/2023		27/11/2023		
Date analysed	-			27/11/2023	5	27/11/2023	27/11/2023		27/11/2023		
рН	pH Units		Inorg-001	[NT]	5	6.4	6.5	2	101		
Electrical Conductivity	μS/cm	1	Inorg-002	<1	5	30000	29000	3	100		

Envirolab Reference: 338704

QUALITY CON	QUALITY CONTROL: Cations in water Dissolved							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	338704-2	
Date digested	-			28/11/2023	1	28/11/2023	28/11/2023		28/11/2023	28/11/2023	
Date analysed	-			29/11/2023	1	29/11/2023	29/11/2023		29/11/2023	29/11/2023	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	67	65	3	104	94	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	670	640	5	102	#	
Hardness	mgCaCO3/L	3	Metals-020	[NT]	1	2900	2800	4	[NT]	[NT]	

Envirolab Reference: 338704

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 338704

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 338704 Page | 32 of 33

Report Comments

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Cations in water - Dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

TRH Water(C10-C40) NEPM - The positive result in the rinsate sample is due to a single peak with no hydrocarbon profile that is consistent with the use of plastic containers.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 338704 Page | 33 of 33 R00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Brendan Page

Sample Login Details	
Your reference	E35614P2, Bankstown
Envirolab Reference	338704
Date Sample Received	27/11/2023
Date Instructions Received	27/11/2023
Date Results Expected to be Reported	04/12/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	8 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au

www.envirolab.com.au

Sample ID	VOCs in water	PFAS in Waters Trace Extended	PFAS in Waters Short	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	HM in water - dissolved	Hd	Electrical Conductivity	Cations in water Dissolved
MW102	1			_	-	_	-			-
IVIVV IUZ	ν_	✓		✓	✓	✓	✓	✓	✓	✓
MW107	∨	√		✓	√	✓	√	√	√	✓
-		1		-	-		-			
MW107	✓	✓		✓	✓	✓	✓	✓	✓	✓
MW107 MW114	✓	✓ ✓		√ √	√ √	√	√	√	√	√
MW107 MW114 MW121	✓ ✓	✓ ✓ ✓		✓ ✓ ✓	√ √ √	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓
MW107 MW114 MW121 MW126	✓ ✓ ✓	✓ ✓ ✓	✓	√ √ √	√ √ √	√ √ √	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job E35614P2 12 ASHLEY STREET Number: CHATSWOOD NSW 2067 **JK**Environments P: (02) 99106200 Date Results STANDARD REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Aileen Page: 1 of 1 Attention: **Brendan Page** bpage@jkenvironments.com.au Location: Bankstown Sample Preserved in Esky on Ice Sampler: AD **Tests Required** PFAS (Trace-extended) Sample Description pH / EC / Hardness PFAS (Short suite) Combo 3 Date Lab Sample VOCS BTEX Sample Containers PID Sampled Ref: Number ι ## Water X X X X 24/11/2023 MW102 2 ## Χ Χ Χ Χ Water 24/11/2023 MW107 3 ## X X Water X X 24/11/2023 MW114 ## X X Water X X 24/11/2023 MW121 X X X ## Water X 24/11/2023 MW126 1x amber, 4x BTEX, Duplicate X X Χ 1x HNO3, 2x PFAS 24/11/2023 WDUP101 1x amber, 4x BTEX, X X Duplicate X Please send to Envriolab VIC 1x HNO3, 2x PFAS 24/11/2023 **WDUP102 2x amber, 2x BTEX, 7 Trip Blank X X 2x PFAS, 1x HNO3 24/11/2023 TB-W101 8 1x BTEX Trip Spike X 24/11/2023 TS-W101 Envirolab Services ENVIROLAB 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200 04 Date Received: 2.7/) Time Received U230 Received By: 4.0 Temp: Coc/Ambient Cooling: (Ce) cepaek Security: Intact/Broken/Mone Remarks (comments/detection limits required): Sample Containers: # inter- lab analysis ## Each sample contains 1x amber glass, 4x BTEX vials, 1x HNO3 bottle, 1x PVC unpreserved bottle, 2x PFAS bottles Relinquished By: BP Date: 27.11.23 Time: Bam Received By: Date:

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 40928

Client Details	
Client	JK Environments
Attention	Brendan Page
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E35614P2
Number of Samples	1 Water
Date samples received	28/11/2023
Date completed instructions received	28/11/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	04/12/2023	
Date of Issue	04/12/2023	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Chris De Luca, Assistant Lab Manager Tianna Milburn, Senior Chemist **Authorised By**

Pamela Adams, Laboratory Manager

VOCs in water - Routine Level		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Date extracted	-	02/12/2023
Date analysed	-	02/12/2023
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	μg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	μg/L	<1
Chloroform	μg/L	<1
2,2-dichloropropane	μg/L	<1
1,2-dichloroethane	μg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	µg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	μg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	μg/L	<1
Ethylbenzene	μg/L	<1

VOCs in water - Routine Level		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	μg/L	<2
Styrene	μg/L	<1
1,1,2,2-tetrachloroethane	μg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	μg/L	<1
Isopropylbenzene	μg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	μg/L	<1
2-chlorotoluene	μg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	μg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	μg/L	<1
1,3-dichlorobenzene	μg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	μg/L	<1
1,2-dichlorobenzene	μg/L	<1
n-butyl benzene	μg/L	<1
1,2-dibromo-3-chloropropane	μg/L	<1
1,2,4-trichlorobenzene	μg/L	<1
Hexachlorobutadiene	μg/L	<1
1,2,3-trichlorobenzene	μg/L	<1
Surrogate Dibromofluoromethane	%	126
Surrogate toluene-d8	%	103
Surrogate 4-BFB	%	111

vTRH(C6-C10)/BTEXN in Water		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Date extracted	-	02/12/2023
Date analysed	-	02/12/2023
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ -C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Total +ve Xylenes	μg/L	<1
Total BTEX in water	μg/L	<1
Surrogate Dibromofluoromethane	%	129
Surrogate toluene-d8	%	104
Surrogate 4-BFB	%	107

TRH Water(C10-C40) NEPM		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Date extracted	-	29/11/2023
Date analysed	-	30/11/2023
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	<50
TRH >C10 - C16	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	75

PAHs in Water		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Date extracted	-	30/11/2023
Date analysed	-	30/11/2023
Naphthalene	μg/L	1
Acenaphthylene	μg/L	<0.1
Acenaphthene	μg/L	<0.1
Fluorene	μg/L	<0.1
Phenanthrene	μg/L	<0.1
Anthracene	μg/L	<0.1
Fluoranthene	μg/L	<0.1
Pyrene	μg/L	<0.1
Benzo(a)anthracene	μg/L	<0.1
Chrysene	μg/L	<0.1
Benzo(b,j&k)fluoranthene	μg/L	<0.2
Benzo(a)pyrene	μg/L	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1
Total +ve PAH's	μg/L	1
Benzo(a)pyrene TEQ	μg/L	<0.5
Surrogate p-Terphenyl-d ₁₄	%	88

HM in water - dissolved		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Date prepared	-	30/11/2023
Date analysed	-	30/11/2023
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.2
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	<2
Lead-Dissolved	μg/L	<1
Nickel-Dissolved	μg/L	5
Zinc-Dissolved	μg/L	18
Mercury-Dissolved	μg/L	<0.05

PFAS in water TRACE Extended		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Date prepared	-	01/12/2023
Date analysed	-	01/12/2023
Perfluorobutanesulfonic acid	μg/L	0.017
Perfluoropentanesulfonic acid	μg/L	0.014
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.019
Perfluoroheptanesulfonic acid	μg/L	<0.001
Perfluorooctanesulfonic acid PFOS	μg/L	0.002
Perfluorodecanesulfonic acid	μg/L	<0.002
Perfluorobutanoic acid	μg/L	<0.004
Perfluoropentanoic acid	μg/L	<0.002
Perfluorohexanoic acid	μg/L	<0.0004
Perfluoroheptanoic acid	μg/L	<0.0004
Perfluorooctanoic acid PFOA	μg/L	0.0002
Perfluorononanoic acid	μg/L	<0.001
Perfluorodecanoic acid	μg/L	<0.002
Perfluoroundecanoic acid	μg/L	<0.002
Perfluorododecanoic acid	μg/L	<0.005
Perfluorotridecanoic acid	μg/L	<0.01
Perfluorotetradecanoic acid	μg/L	<0.05
4:2 FTS	μg/L	<0.001
6:2 FTS	μg/L	<0.0004
8:2 FTS	μg/L	<0.0004
10:2 FTS	μg/L	<0.002
Perfluorooctane sulfonamide	μg/L	<0.01
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05
N-Ethyl perfluorooctanesulfon -amide	μg/L	<0.1
N-Me perfluorooctanesulfonamid -oethanol	μg/L	<0.05
N-Et perfluorooctanesulfonamid -oethanol	μg/L	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.002
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.002
Surrogate ¹³ C ₈ PFOS	%	100
Surrogate ¹³ C ₂ PFOA	%	100
Extracted ISTD 13 C ₃ PFBS	%	68
Extracted ISTD 18 O ₂ PFHxS	%	74
Extracted ISTD 13 C4 PFOS	%	76
Extracted ISTD 13 C4 PFBA	%	34

PFAS in water TRACE Extended		
Our Reference		40928-1
Your Reference	UNITS	WDUP102
Date Sampled		24/11/2023
Type of sample		Water
Extracted ISTD 13 C3 PFPeA	%	84
Extracted ISTD 13 C ₂ PFHxA	%	77
Extracted ISTD 13 C4 PFHpA	%	85
Extracted ISTD 13 C ₄ PFOA	%	118
Extracted ISTD 13 C ₅ PFNA	%	83
Extracted ISTD 13 C ₂ PFDA	%	95
Extracted ISTD 13 C2 PFUnDA	%	92
Extracted ISTD 13 C ₂ PFDoDA	%	88
Extracted ISTD 13 C2 PFTeDA	%	87
Extracted ISTD 13 C ₂ 4:2FTS	%	112
Extracted ISTD 13 C ₂ 6:2FTS	%	176
Extracted ISTD ¹³ C ₂ 8:2FTS	%	137
Extracted ISTD 13 C8 FOSA	%	65
Extracted ISTD d ₃ N MeFOSA	%	109
Extracted ISTD d ₅ N EtFOSAA	%	102
Extracted ISTD d ₇ N MeFOSE	%	106
Extracted ISTD d ₉ N EtFOSE	%	85
Extracted ISTD d ₃ N MeFOSAA	%	96
Extracted ISTD ds N EtFOSAA	%	91
Total Positive PFHxS & PFOS	μg/L	0.021
Total Positive PFOS & PFOA	μg/L	0.0022
Total Positive PFAS	μg/L	0.052

Method ID	Methodology Summary
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Method ID	Methodology Summary					
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLP/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.					
	Analysis is undertaken with LC-MS/MS.					
	PFAS results include the sum of branched and linear isomers where applicable.					
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.					
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER					

QUALITY CON	NTROL: VOCs	in water -	- Routine Level			Dι	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			02/12/2023	[NT]		[NT]	[NT]	02/12/2023	
Date analysed	-			02/12/2023	[NT]		[NT]	[NT]	02/12/2023	
Dichlorodifluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94	
2,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	85	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97	
1,1-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	95	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	84	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	81	
1,2-dibromoethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	95	
1,1,1,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	84	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALITY CONT	ROL: VOCs in water - Routine Level					Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
2-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Sec-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-isopropyl toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Surrogate Dibromofluoromethane	%		Org-023	128	[NT]		[NT]	[NT]	101	[NT]
Surrogate toluene-d8	%		Org-023	102	[NT]		[NT]	[NT]	93	[NT]
Surrogate 4-BFB	%		Org-023	110	[NT]		[NT]	[NT]	100	[NT]

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			02/12/2023	[NT]		[NT]	[NT]	02/12/2023		
Date analysed	-			02/12/2023	[NT]		[NT]	[NT]	02/12/2023		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	101		
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102		
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	96		
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100		
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	104		
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	97		
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	80		
Surrogate Dibromofluoromethane	%		Org-023	130	[NT]		[NT]	[NT]	104		
Surrogate toluene-d8	%		Org-023	103	[NT]		[NT]	[NT]	93		
Surrogate 4-BFB	%		Org-023	106	[NT]		[NT]	[NT]	97		

QUALITY CON	TROL: TRH	Water(C1	0-C40) NEPM			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			29/11/2023	[NT]		[NT]	[NT]	29/11/2023	
Date analysed	-			30/11/2023	[NT]		[NT]	[NT]	30/11/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	121	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	133	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	100	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	121	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	133	
Surrogate o-Terphenyl	%		Org-020	79	[NT]		[NT]	[NT]	86	

QUAL	ITY CONTRO	_: PAHs_ii	n Water			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			30/11/2023	[NT]		[NT]	[NT]	30/11/2023		
Date analysed	-			30/11/2023	[NT]		[NT]	[NT]	30/11/2023		
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92		
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95		
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102		
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102		
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95		
Benzo(b,j&k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87		
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	105	[NT]		[NT]	[NT]	102		

QUALITY CO	QUALITY CONTROL: HM in water - dissolved						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/11/2023	[NT]		[NT]	[NT]	30/11/2023	
Date analysed	-			30/11/2023	[NT]		[NT]	[NT]	30/11/2023	
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	89	
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]		[NT]	[NT]	91	
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	92	
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	92	
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	103	
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	91	
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	[NT]		[NT]	[NT]	89	
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]		[NT]	[NT]	117	

MePerfluorooctanesulf- amid oacetic acid μg/L 0.002 Org-029 <0.002 INT INT INT 106 INT EtPerfluorooctanesulf- amid oacetic acid μg/L 0.002 Org-029 <0.002 INT INT INT INT 108 INT Surrogate ¹³ C ₈ PFOS % Org-029 101 INT INT INT INT 109 INT Surrogate ¹³ C ₂ PFOA % Org-029 98 INT INT INT INT INT 103 INT	QUALITY CONTRO	OL: PFAS ir	n water TF	RACE Extended			Dι	plicate		Spike Re	covery %
Perflucrohemanesulfonic acid pgl. 0.001 Org-029 <0.001 IT PT PT PT 105 PT PT PT PT PT PT PT P	Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Perfluorondosanesustionic acid μg/L 0.0002 Oty-029 <0.0002 NT μTT PTT 100 μTT Perfluorondosanesustionic acid μg/L 0.001 Org-029 <0.0002	Perfluorobutanesulfonic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	103	[NT]
Perfluoroteptanesulfonic acid yg/L 0.001 Org-029 <0.0001 NT prij prij prij 101 103 prij prij prij prij 101 prij p	Perfluoropentanesulfonic acid	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	105	[NT]
Perfluorodecanesulfonic acid μg/L 0.0002 Org-029 <0.0002 NI [NII [NII 103 [NII 103 [NII 103 NII NII 103	Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	100	[NT]
Perfluorodecanesulfonic acid μg/L 0.002 Org-029 <0.002 NI NII PRI NII 92 PRI PRI NII 92 PRI NII 92 PRI NII 92 PRI PRI NII 93 PRI NII 94 PRI NII 94 PRI NII 94 PRI NII 95 PRI NII 96 PRI NII 96 PRI NII 96 PRI NII 96 PRI PRI NII 96 PRI PRI NII 96 PRI PRI PRI NII 96 PRI PRI NII 96 PRI PRI PRI PRI NII 96 PRI	Perfluoroheptanesulfonic acid	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	101	[NT]
Perfluorobutanoic acid	Perfluorooctanesulfonic acid PFOS	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	103	[NT]
Perfluorodecanoic acid	Perfluorodecanesulfonic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	92	[NT]
Perfluorobexanoic acid µg/L 0.0004 Org-029 <0.0004 NT NT NT 106 NT NT 106 NT Perfluorobeptanoic acid µg/L 0.0004 Org-029 <0.0004 NT NT NT 105	Perfluorobutanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	102	[NT]
Perfluoroctanoic acid pg/L 0.0004 Org-029 <0.0004 IT NT NT 105 NT	Perfluoropentanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	99	[NT]
Perfluorocotanoic acid PFOA μg/L 0.0002 Org-029 <0.0002 III INI INI INI 96 INI Perfluoronanoic acid μg/L 0.001 Org-029 <0.001 III INI I	Perfluorohexanoic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	106	[NT]
Perfluorononanoic acid μg/L 0.001 Org-029 <0.001 NT	Perfluoroheptanoic acid	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	105	[NT]
Perfluorodecanoic acid μg/L 0.002 Org-029 <0.002 NTI NTI 92 NTI Perfluoroundecanoic acid μg/L 0.002 Org-029 <0.002	Perfluorooctanoic acid PFOA	μg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	96	[NT]
Perfluoroundecanoic acid μg/L 0.002 Org-029 <0.002 NTI [NTI] [NTI] [NTI] 105 [NTI] Perfluorotodecanoic acid μg/L 0.005 Org-029 <0.005	Perfluorononanoic acid	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	117	[NT]
Perfluorododecanoic acid μg/L 0.005 Org-029 <0.005 NT [NT] [NT] [NT] 96 NT Perfluorotridecanoic acid μg/L 0.01 Org-029 <0.05	Perfluorodecanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	92	[NT]
Perfluorotridecanoic acid μg/L 0.01 Org-029 <0.01 INT [NT] [NT] 109 [NT] Perfluorotetradecanoic acid μg/L 0.05 Org-029 <0.05	Perfluoroundecanoic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	105	[NT]
Perfluorotetradecanoic acid μg/L 0.05 Org-029 <0.05 NT NT NT NT 105 NT 4:2 FTS μg/L 0.001 Org-029 <0.001	Perfluorododecanoic acid	μg/L	0.005	Org-029	<0.005	[NT]		[NT]	[NT]	96	[NT]
4:2 FTS μg/L 0.001 Org-029 <0.001 NT	Perfluorotridecanoic acid	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	109	[NT]
6:2 FTS	Perfluorotetradecanoic acid	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	105	[NT]
8:2 FTS	4:2 FTS	μg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	104	[NT]
10:2 FTS	6:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	86	[NT]
Perfluorooctane sulfonamide μg/L 0.01 Org-029 <0.01 NTI [NT] [NT] [NT] 106 [NT] N-Methyl perfluorooctane sulfonamide μg/L 0.05 Org-029 <0.05	8:2 FTS	μg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	120	[NT]
N-Methyl perfluorooctane sulfonamide μg/L 0.05 Org-029 <0.05 NT NT NT 109 NT 117 NT N-Methyl perfluorooctanesulfon -amide μg/L 0.1 Org-029 <0.1 NT NT N-Me perfluorooctanesulfonamid -oethanol μg/L 0.05 Org-029 <0.05 NT NT NT N-Me perfluorooctanesulfonamid -oethanol μg/L 0.5 Org-029 <0.5 NT NT NT 106 NT N-Et perfluorooctanesulfonamid -oethanol μg/L 0.5 Org-029 <0.5 NT NT NT N-Et perfluorooctanesulf- amid oacetic acid μg/L 0.002 Org-029 <0.002 NT NT NT NT 106 NT	10:2 FTS	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	107	[NT]
N-Ethyl perfluorooctanesulfon -amide μg/L 0.1 Org-029 <0.1 NT NT 117 NT N-Me perfluorooctanesulfonamid -oethanol μg/L 0.05 Org-029 <0.05 NT NT N-Et perfluorooctanesulfonamid -oethanol μg/L 0.5 Org-029 <0.5 NT NT NT 106 NT N-Et perfluorooctanesulf- amid oacetic acid μg/L 0.002 Org-029 <0.002 NT NT NT 106 NT NT NT 108 NT NT 108 NT NT NT 108 NT NT NT 109 NT NT NT NT 109 NT NT NT 109 NT NT NT 109 NT NT NT NT NT NT 109 NT	Perfluorooctane sulfonamide	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	106	[NT]
N-Me perfluorooctanesulfonamid -oethanol μg/L 0.05 Org-029 <0.05 NT NT N-Et perfluorooctanesulfonamid -oethanol μg/L 0.5 Org-029 <0.5 NT NT N-Et perfluorooctanesulfonamid -oethanol μg/L 0.5 Org-029 <0.5 NT	N-Methyl perfluorooctane sulfonamide	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	109	[NT]
N-Et perfluorooctanesulfonamid -oethanol μg/L 0.5 Org-029 <0.5 NT NT NT 106 NT	N-Ethyl perfluorooctanesulfon -amide	μg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	117	[NT]
MePerfluorooctanesulf- amid oacetic acid μg/L 0.002 Org-029 <0.002	N-Me perfluorooctanesulfonamid -oethanol	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	99	[NT]
EtPerfluorooctanesulf- amid oacetic acid μg/L 0.002 Org-029 <0.002 [NT] [NT] [NT] 108 [NT] Surrogate ¹³ C ₈ PFOS % Org-029 101 [NT] [NT] [NT] 109 [NT] Surrogate ¹³ C ₂ PFOA % Org-029 98 [NT] [NT] [NT] 103 [NT]	N-Et perfluorooctanesulfonamid -oethanol	μg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	106	[NT]
Surrogate ¹³ C ₈ PFOS % Org-029 101 [NT] [NT] [NT] 109 [NT] Surrogate ¹³ C ₂ PFOA % Org-029 98 [NT] [NT] [NT] 103 [NT]	MePerfluorooctanesulf- amid oacetic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	106	[NT]
Surrogate ¹³ C ₈ PFOS % Org-029 101 [NT] [NT] [NT] 109 [NT] Surrogate ¹³ C ₂ PFOA % Org-029 98 [NT] [NT] [NT] 103 [NT]	EtPerfluorooctanesulf- amid oacetic acid	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	108	[NT]
Surrogate ¹³ C ₂ PFOA	Surrogate ¹³ C ₈ PFOS	%		Org-029	101	[NT]		[NT]		109	
Extracted ISTD ¹³ C ₃ PFBS % Org-029 72 NT] NT] NT] NT] 77 NT]	Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	72	[NT]					[NT]

QUALITY CONTR	ROL: PFAS ir	n water T	RACE Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	74	[NT]		[NT]	[NT]	83	[NT]
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	67	[NT]		[NT]	[NT]	72	[NT]
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	88	[NT]		[NT]	[NT]	102	[NT]
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	74	[NT]		[NT]	[NT]	86	[NT]
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	83	[NT]		[NT]	[NT]	89	[NT]
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	83	[NT]		[NT]	[NT]	89	[NT]
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	99	[NT]		[NT]	[NT]	108	[NT]
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	82	[NT]		[NT]	[NT]	92	[NT]
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	83	[NT]		[NT]	[NT]	97	[NT]
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	93	[NT]		[NT]	[NT]	103	[NT]
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	90	[NT]		[NT]	[NT]	97	[NT]
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	75	[NT]		[NT]	[NT]	80	[NT]
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	112	[NT]		[NT]	[NT]	131	[NT]
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	155	[NT]		[NT]	[NT]	189	[NT]
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	121	[NT]		[NT]	[NT]	144	[NT]
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	64	[NT]		[NT]	[NT]	76	[NT]
Extracted ISTD d ₃ N MeFOSA	%		Org-029	84	[NT]		[NT]	[NT]	85	[NT]
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	81	[NT]		[NT]	[NT]	82	[NT]
Extracted ISTD d ₇ N MeFOSE	%		Org-029	92	[NT]		[NT]	[NT]	98	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	82	[NT]		[NT]	[NT]	81	[NT]

QUALITY CONTROL: PFAS in water TRACE Extended						Duplicate				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	79	[NT]			[NT]	94	[NT]
Extracted ISTD d ₅ N EtFOSAA	%		Org-029	84	[NT]	[NT]	[NT]	[NT]	95	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 40928 Page | 22 of 23

Report Comments

PFAS analysed by Envirolab Sydney, report number 338948.

METALS: The PQL has been raised for Cadmium and Copper due to the sample matrix requiring dilution.

PFAS: For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 40928 Page | 23 of 23

Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Brendan Page

Sample Login Details		
Your reference	E35614P2	
Envirolab Reference	40928	
Date Sample Received	28/11/2023	
Date Instructions Received	28/11/2023	
Date Results Expected to be Reported	04/12/2023	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	18.6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Pamela Adams	Chris De Luca
Phone: 03 9763 2500	Phone: 03 9763 2500
Fax: 03 9763 2633	Fax: 03 9763 2633
Email: padams@envirolab.com.au	Email: cdeluca@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645 - 002
25 Research Drive Croydon South VIC 3136
ph 03 9763 2500 fax 03 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

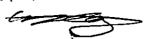
Sample ID	VOCs in water - Routine Level	vTRH(C6-C10)/BTEXN in Water	TRH Water(C10-C40) NEPM	PAHs in Water	HM in water - dissolved	PFAS in water TRACE Extended
WDUP102	✓	✓	✓	✓	✓	✓

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.


Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

SAMPLE AND CHAIN OF CUSTODY FORM TO: FROM: ENVIROLAB SERVICES PTY LTD JKE Job E35614P2 12 ASHLEY STREET Number: CHATSWOOD NSW 2067 **JK**Environments P: (02) 99106200 STANDARD Date Results REAR OF 115 WICKS ROAD F: (02) 99106201 Required: MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Brendan Page lofi, Attention: Aileen Page: bpage@jkenvironments.com.au Location: Bankstown . 8 3 Sample Preserved in Esky on Ice Sampler: AD Tests Required PFAS (Trace-extended) pH / EC / Hardness PFAS (Short suite) Сошро 3 Date Lab Sample BTEX Sample Containers PID Sampled Ref: Number l ## Water X X X X 24/11/2023 MW102 2 ## X Water Χ X X 24/11/2023 MW107 3 ## Water X X X X 24/11/2023 MW114 ## X Water X X X 24/11/2023 MW121 ## Water X X X X 24/11/2023 MW126 6 1x amber, 4x BTEX, X Duplicate X X 1x HNO3, 2x PFAS 24/11/2023 WDUP101 1x amber, 4x STEX; جي ڀاڪجيد Duplicate X Please send to Envirolab VIC X X 1x HNO3, 2x PFAS 24/11/2023 **WDUP102 2x amber, 2x BTEX, Trip Blank X X 24/11/2023 2x PFAS, 1x HNO3 TB-W101 2 1x BTEX Trip Spike X 24/11/2023 TS-W101 Anviro b Service: Eบ่งเร็กกษ์ อ 25 Research Drive roy Jon South Vir 3135 Envirolab Services 12 Ashley St ENVIROLAB Ph: (03) 9763 2500 Chalswood NSW 2067 Ph: (02) 9910 6200 100 NO: 3-5 8 104 Date Received: 2-7/1 Time Received: Received By: E Time Received (1230) Temp: CopilAmbi Received By: Hemp: Cool/Amplent
Cooling: (Cooling: (Cool Cooling: Too/Ibdoo Securey: Inter/Bruken/None Remarks (comments/detection limits required): Sample Containers: # inter - lab analysis ## Each sample contains 1x amber glass, 4x BTEX vials, 1x HNO3 bottle, 1x PVC unpreserved bottle, 2x PFAS bottles Relinquished By: BP Date: 27.11.23 Time: 8am Received By: Date:

Relinquished by ELS SYD

Grave Zhang

27/11/23 1200

Appendix F: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide*, (1991)²¹. The NEPM (2013) is consistent with these documents.

A. Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 $^{^{20}}$ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix G: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table QS1 and QS2 for soil and Tables QG1 and QG2 for groundwater) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report. A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Number Analysed	Frequency (of Sample Type)				
Intra-laboratory duplicate (soil)	6 - general contamination 4 - PFAS	Up to approximately 7.5% of primary samples				
Inter-laboratory duplicate (soil)	5 - general contamination 4 - PFAS	As above				
Intra-laboratory duplicate (groundwater)	1	Approximately 20% of primary samples				
Inter-laboratory duplicate (groundwater)	1	As above				
Trip spikes Soil	1	One for the investigation to demonstrate adequacy of preservation, storage and transport methods				
Water	1					
Trip blanks		One for the investigation to demonstrate adequacy of storage and transport methods				
Soil	1					

Sample Type	Number Analysed	Frequency (of Sample Type)
Water	1	
Rinsate (soil SPT)	1	One per day of soil sampling where the rig and reusable SPT sampler was used

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and the PQLs for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

60-140% recovery acceptable for general organics; and

10-140% recovery acceptable for VOCs.

Method Blanks

All results less than PQL.

B. DATA EVALUATION

1. Sample Collection, Storage, Transport and Analysis

Samples were collected by trained field staff in accordance with our standard sampling procedures. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

JKE note that the temperature on receipt of soil and groundwater samples was reported to be up to 20.2°C. These higher temperatures were reported for the inter-lab samples which were transported inter-state. JKE understand that the temperature is measured at the laboratory using an infrared temperature probe by scanning the outside of the sample container (i.e. one sample jar/container at the time of registering the samples). This procedure is not considered to be robust as there is a potential for the outside of the jar to warm to ambient temperature, or at least to increase from that of the internal contents, relatively quickly. It is also likely that there was insufficient cooling during transport. On this basis, JKE is of the opinion that the temperatures reported on the Sample Receipts are unlikely to be reliable or representative of the overall batch. This is further supported by the trip spike recovery results (discussed further below) which were all acceptable for soil and water.

Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. <u>Laboratory PQLs</u>

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC, with the exception of the anthracene PQL for groundwater analysis which was 10 times greater than the ecological SAC and vinyl chloride analysis for groundwater which was just over three times greater than the human health SAC. In light of the PAH and other chlorinated solvent/VOC concentrations reported for soil and groundwater, JKE is of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. Sporadic RPD non-conformances were reported for some analytes, including PFAS compounds, TRHs, PAHs and heavy metals. The RPD exceedances were attributed to minor sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices, or in some instances, results that were very close to the PQL. All primary and duplicate results were compared to the SAC for risk assessment purposes, therefore the RPD exceedances are not considered to have had an adverse impact on the data set as a whole or the outcome of the Tier 1 risk assessment.

Trip Blanks

During the investigation, one soil trip blank was placed in the esky during sampling and transported back to the laboratory. The soil trip blank analysis results were all less than the PQLs with the exception of chromium, lead and zinc. Low level metals concentrations are typical in washed sand which is utilised as blank material. In JKE's experience, the concentrations reported were consistent with background concentrations in a sand matrix and were not indicative of cross-contamination. On this basis, cross contamination between samples that may have significance for data validity did not occur.

During the investigation, one water trip blank was placed in the esky during sampling and transported back to the laboratory. The water trip blank analysis results were all less than the PQLs with the exception of TRH C_{10} - C_{16} and zinc. The occurrence of TRHs was attributed to the plastic containers in which the blank waster was stored. The zinc is considered to be naturally occurring and is not indicative of cross-contamination.

Overall, the trip blank results were acceptable.

Rinsates

All rinsate results were below the PQL, except for a low concentration of TRH C_{10} - C_{16} . The occurrence of TRHs was attributed to the plastic containers in which the rinsate water was stored. This indicated that cross-contamination artefacts associated with sampling equipment were not present and the potential for cross-contamination to have occurred was low.

Trip Spikes

The results ranged from 93% to 98% in the soil spike, and 93% to 118% in water, and indicated that field preservation methods were appropriate.

4. <u>Laboratory QA/QC</u>

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation.

A review of the laboratory QA/QC data identified the following minor non-conformances:

- TRH Soil C₁₀-C₄₀ samples denoted with # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 338230-93ms have caused interference;
- For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the
 respective target analyte results may be unaffected, in other circumstances the PQL has been raised
 to accommodate the outlier(s);
- PAHs in Soil The RPD for duplicate results is accepted due to the non homogenous nature of samples 338230-49 and 338230-72;
- TRH Water(C_{10} - C_{40}) The positive result in the rinsate and trip blank samples are due to a single peak with no hydrocarbon profile that is consistent with the use of plastic containers;
- Acid Extractable Metals in Soil:
 - The laboratory RPD acceptance criteria has been exceeded for 338230-1 for Cr. Therefore, a triplicate result has been issued as laboratory sample number 338230-258.
 - The laboratory RPD acceptance criteria has been exceeded for 338230-72 for Cr and Zn. Therefore, a triplicate result has been issued as laboratory sample number 338230-259.
- Samples denoted with ## Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 338230-214 have caused interference;
- Metals in TCLP USEPA1311 The duplicate result for nickel in sample 338230-54 is greater than the
 acceptable RPD. The RPD for duplicate results is accepted due to the inhomogeneous nature of the
 sample/s;
- The RPD for duplicate results 40805-6 for nickel is accepted due to the inhomogeneous nature of the sample/s. Triplicate analysis confirms this and is available upon request;
- Dissolved heavy metals in water, samples denoted with # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS: and
- Dissolved cations in water, samples denoted with # Percent recovery is not applicable due to the high
 concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the
 LCS.

Overall, the laboratory experienced some interference and heterogeneity in their analysis. As the results (except for some heavy metals in groundwater) were reported at concentrations that were well below the SAC nominated for the assessment of risk in the context of the PSI, the interference and RPD non-conformances are not considered to be significant. The laboratory QA/QC results are considered to be acceptable in relation to accuracy.

C. DATA QUALITY SUMMARY

JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These non-conformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods.

Appendix H: Field Work Documents

PID FIELD CALIBRATION FORM

Client:	Bankstown Airport Pty Limited						
Project:	Skyfield Development						
Location:	Bankstown Airport, BANKST	OWN, NSW					
Job Number:	E35614P2						
		ID					
			Date of last factory				
Make: MiniRaeLite +	Model: PGM7300	Unit: PINY	calibration: 13/07/23				
Date of calibration: 15/11	23	Name of Calibrator: AO	15/2/15				
Calibration gas: Iso-butylen	е	Calibration Gas Concentration	on: 100.0 ppm				
Measured reading: 100 -8	ppm	Error in measured reading:	± ppm				
Measured reading Acceptab	ole (Yes/No):		11				
	Р	ID					
e at a grant was a super-	0.001M (((0.000)		Date of last factory				
Make: MiniMae Litet,		Unit: PID4	calibration: 13/07/23				
Date of calibration: 16/11/2		Name of Calibrator: 🗚 🕽					
Calibration gas: Iso-butylen		Calibration Gas Concentration: 100.0 ppm					
Measured reading: 102-2		Error in measured reading:	± ppm				
Measured reading Acceptab	le (Yes/No):						
	P	ID					
Make: MiniRaeLitet		Unit: PIDY	Date of last factory calibration: 13 07 23				
Date of calibration: 17 11 7		Name of Calibrator: AV					
Calibration gas: Iso-butylen		Calibration Gas Concentration	on: 100.0 ppm				
Measured reading: 100		Error in measured reading: ± ppm					
Measured reading Acceptab	le (Yes/No):						
	Pl	D					
	Model: PGM7300	Unit: 0104	Date of last factory calibration: (3/07/23				
Date of calibration: 20 11		Name of Calibrator: LR					
Calibration gas: Iso-butylen		Calibration Gas Concentration: 100.0 ppm					
Measured reading: 104-8		Error in measured reading: ± ppm					
Measured reading Acceptab							
	PI	D					
Make: MiniRaeLitet			Date of last factory calibration: 13 07/23				
Date of calibration: 2) /11/2		Name of Calibrator: An					
211116	-3	Name of Calibrator: [7]					
Calibration gas: Iso-butylene		Calibration Gas Concentration	n: 100.0 ppm				
	ppm		n: 100.0 ppm ± ppm				

PID FIELD CALIBRATION FORM

Client:	Bankstown Airport Pty Lim	ited				
Project:	Skyfield Development					
Location:	Bankstown Airport, BANKS	TOWN, NSW				
Job Number:	E35614P2					
		PID				
Make: MiniRaeljtet	Model: PGM7300	Unit: PID3	Date of last factory calibration: 09/08/23			
Date of calibration: 2) 11 23	3	Name of Calibrator: AD				
Calibration gas: Iso-butylen	ne	Calibration Gas Concentrati	on: 100.0 ppm			
Measured reading: 100	ppm ppm	Error in measured reading:	± ppm			
Measured reading Acceptab	ole (Yes/No):	-				
		PID				
Make: MiniRaeLite+		Unit: PID3	Date of last factory calibration: $09/08/23$			
Date of calibration: 24 11		Name of Calibrator: (A)				
Calibration gas: Iso-butylen		Calibration Gas Concentrati				
Measured reading: 100		Error in measured reading:	± ppm			
Measured reading Acceptab						
		PID				
N.A.a.l.	NA - d - d		Date of last factory			
Make:	Model:	Unit:	calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butylen		Calibration Gas Concentration				
Measured reading:	ppm	Error in measured reading:	± ppm			
Measured reading Acceptab	ile (Yes/No):					
	F	PID				
Make:	Model:	Unit:	Date of last factory calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm			
Measured reading:	ppm	Error in measured reading:	± ppm			
Measured reading Acceptab	le (Yes/No):					
	P	D				
Make:	Model:	Unit:	Date of last factory calibration:			
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butylen	e	Calibration Gas Concentration	on: 100.0 ppm			
Measured reading:	ppm	Error in measured reading:	± ppm			
Measured reading Acceptab	le (Yes/No):					

WATER QUALITY METER CALIBRATION FORM

Client: Bankstown Airport Pty Limited				
Project: Skyfield Develo	pment			
Location: Bankstown Air	port, BANKSTOWN, NSW			
Job Number: E35614P2				
D	SSOLVED OXYGEN			
Make: YS14	Model: Professional Series			
Date of calibration: 21-11-2-3	Name of Calibrator:			
Span value: 70% to 130%				
Measured value: 25%				
Measured reading Acceptable (Yes/No):				
	рН			
Make: 9514	Model: Profession Series			
Date of calibration: 21-11-2-5	Name of Calibrator:			
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 10/24 Lot No: CT33110			
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 3/24 Lot No: CB 2665			
Measured reading of Buffer 1: 6.50				
Measured reading of Buffer 2: 4.07				
Slope:	Measured reading Acceptable (Yes/No):			
	EC			
Make: YS14	Model: Krotessian Series			
Date: 21.11.2 Name of Calibr	ator: 4 Temperature: 21.6°C			
Calibration solution: Kowe's Scientific	Expiry date: 09/24 Lot No: DE 09/222			
Theoretical conductivity at temperature (see solutio	n container): μS/cm			
Measured conductivity: ١૩૮١ μS/cm	Measured reading Acceptable (Yes/No):			
	REDOX			
Make: YS14	Model: Prefessional Series			
Date of calibration: 21.11なっ	Name of Calibrator: LR			
Calibration solution: OhP Test Solution	Expiry date 28/1/24 Lot No: 81777			
Theoretical redox value: 240mV				
Measured redox reading: こべいろ mV	Measured reading Acceptable (Yes/No):			

WATER QUALITY METER CALIBRATION FORM

Client:	Bankstown Air	port Pty Limited	
Project:	Skyfield Develo	pment	
Location:	Bankstown Airp	port, BANKSTOWN, NSW	V
Job Number:	E35614P2		
	D	ISSOLVED OXYGEN	
Make: YS) 5		Model:	
Date of calibration: 211123		Name of Calibrator: 🖊	tO
Span value: 70% to 130%			
Measured value: リリのゾ、			
Measured reading Acceptable (Yes)	No):		
		рН	
Make: YSIS		Model:	
Date of calibration: 21 11 23		Name of Calibrator: A	0
Buffer 1: Theoretical pH = 7.01± 0.01		Expiry date: 10/24	Lot No: CB3川る
Buffer 2: Theoretical pH = 4.01 ± 0.01		Expiry date: 03/24	Lot No: CB2465
Measured reading of Buffer 1: 7.0	9		
Measured reading of Buffer 2: 4 О	5		
Slope:		Measured reading Acce	eptable (Yes No):
		EC	
Make: YSIS		Model:	
Date: 21/11/23	Name of Calibra		Temperature: 21.7 °C
Calibration solution: Conductivity		Expiry date: 11 24	Lot No: 0E091222
Theoretical conductivity at temperat			
Measured conductivity: 1327 μS/	cm	Measured reading Acce	eptable(Ye)/No):
		REDOX	
Make: YSIS		Model:	
Date of calibration: 21/11/23		Name of Calibrator: 🦰	D
Calibration solution: ORPTEST SC	lution	Expiry date: /	Lot No: 8177
Theoretical redox value:	240mV		
Measured redox reading: 246.8	mV	Measured reading Acce	eptable (Yes)No):

WATER QUALITY METER CALIBRATION FORM

Client: Bankstov	vn Airport Pty Limited
	Development
Location: Bankstov	vn Airport, BANKSTOWN, NSW
Job Number: E35614P	2
	DISSOLVED OXYGEN
Make: YSI 5	Model:
Date of calibration: 24 1123	Name of Calibrator: 👭
Span value: 70% to 130%	
Measured value: ()\'/\	X
Measured reading Acceptable (Yes)No):	
	рН
Make: \S\5	Model:
Date of calibration: 24/11/23	Name of Calibrator: A()
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 10 24 Lot No: CB3\\O
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 03/24 Lot No: CB2665
Measured reading of Buffer 1: 7.02	
Measured reading of Buffer 2: 경영	
Slope:	Measured reading Acceptable (Yes)No):
	EC .
Make: YS\5	Model:
- 13.1	Calibrator: AD Temperature: 20 °C
Calibration solution: CONDUCTIVITY STAN	david Expiry date: 11 24 Lot No: DE091222
Theoretical conductivity at temperature (see s	
Measured conductivity: [272 μS/cm	Measured reading Acceptable (Yes) No):
	REDOX
Make: YSIS	Model:
Date of calibration: 24 11 23	Name of Calibrator: 🗚 🗘
Calibration solution: Or PTEST Solution	Expiry date: 09/27 Lot No: 8/77
Theoretical redox value:	240mV
Measured redox reading: 239.4 mV	Measured reading Acceptable (Yes)/No):

Client:	Bankstown Airport	Pty Limited		A STREET, SHELD	Job	No.:	E3	35614P2	
Project:	Skyfield Developme	ent		Ú+	Well	No.:	IN	1W102	
Location:	Bankstown Airport,	BANKSTOWN, NS	SW	BIRINGI MIRANGAN	Dep	Depth (m):			
VELL FINI	SH DETAILS							137	
							1		
WELL DEV	Gatic (ELOPMENT DETAIL	Cover 🗹	Standpi	ре 🗀		Other (de	scribe)		
Method:	ELOPMENT DETAIL	Develope	on b	SWL - Be	foro (m)		3.25		
Date:	•••••••	21.112		Time - Be	*****************	•••••	9:07		
Undertaker	n Bv:	LB.		SWL - Aft	****************		6.60	701	
Total Vol. F		30L		Time - Aft			9:54		
PID Reading (ppm):		0.1	7.		*************			2, ~ \	
Comments									
	MENT MEASUREME	NTS							
Volu	ume Removed (L)	Temp (°C)		DO	EC (uS(am)	р	н	Eh (mV)	
DX.	14 5	19.6	5.0	mg/L)	(µS/cm)	6	-	470.6	
- AL	10	20.1			16801	- 9		211.2	
************	15	198		.7	1772	6.3		205.5	
2.0		20.4			18688	3 6.3	0	204.5	
An icomiza i compani	25	7E1.90	્	. 8	Wa.	3 0.3	ξ Τ	199.7	
	30	21-7	ιc	>-5	233			100-8	
	35	%r.							
	40					900000			
		THE WELL	6 Dis	ctively	ひい				
		4		7					
	*****************************				- Commence of the control of the con				
ENGLISCON DE LA COMP			*						
					14				
		4							

	·····	4							
*******	***************************************								

omments	Odours (YES / NO	D) NAPL/PSH (Y	ES / (NO) SH	een (YES /	NO) Steady 9	State Achieved	(YES / NOV		
	_							1	
SI Used:	y514	cleo	r mater develo	~+7e/	1	eccharge	- <i>O</i> OS	er ver'	
	-		6/eve/c	buent.	,	Recharge	rigina		
ested By:	LK	Rem	arks:				\sim		
-2120			ady state con		0.0		4	45 400'	
		F-122	- Difference in the pH less than 0.2 units, difference in the conductiveity less than 10%						
ate Tested	.f.17.	1				ence in the con	auctiveity less	tnan 10%	
ate Tested		and :	SWL stable/no	ot in drawdow	n	unless well purg			

3.75 m

Client:	Bankstow	n Airport Pty	/ Limited				Job No.:			E35614P2
Project:	Skyfield [Development	•				Well No.	:	************	MWIOT
Location:	Bankstow	n Airport, B	ANKSTOWN, NSV	······································		************	Depth (m):			
WELL FINI	SH DETAIL	S					W			101
	T			T				1		
-		Gatic Co	ver 🖾	Standpip	ре			Other (de	scribe)	
	ELOPMEN	T DETAILS								
Method:	*********	*********	Devela	ment	SWL - Be					.13~
Date:			21/11/2	3.2	Time - Be					:1200
Undertaker			LR		SWL - Aft			******		400
Total Vol. R		***********	601		Time - Af	ter: 			1	1:21am
PID Readin			0-1							
Comments DEVELOPN		SUREMENT	s							
	me Remo				DO	E	С			N
	(L)		Temp (°C)		ng/L)	(µS/		р	Н	Eh (mV)
	5		10.1	5.		277		4	***********	168.01
	10		18,2	5.		272		4.0	>6	176,0
	15		19.6	7.		287		4.2	>B	208.2
**********	20		19.6	7.2		280			てつ	224.2
	25		19.5	7.				4.1		233.4
	30	19.6			6.8		45	4-0	بهر	242.0
****	35 19.6			5-8	5-8		۹.	ų.υ	c).	252.3
	40		19.8	8.5		8 4	775		01	259.4
	45		19-5	8.	8.5		01	3.8	9	266.5
	So		190		7.5		57 °	~ °	3 1	271-8
***********	55		19.7	6.		281201		25.		,282.4
	60		20.1	6	. 1	786	55/	3.	80/	286.8
	******	ACRIBIO SALA	lon	effe	violine	Dry				
***********					*********			e essentintants	poor sueesy /	
	*				**********					

Comments:	Odoure (V	ES / NOV	NAPL/PSH (YE	S (NO) Ch	en (YES /	NOV Ct	d. 64-4-	A = 1.7 = 1 /	V50 (/0)	
/SI Used: >		10,	C	Her de velon	men)	(NO), Stea	Rech	wge Loser	real	"
ested By:	- Very	LR	Rema	rks:	W77		We	V 1/4	9.)
Date Tested:		21/11/2	- Stead	dy state cond	H less than		difference	in the cond	luctiveity le	ess than 10%
and the same		BP		num 3 monito	ring well vol	umes puro	ed. unles	s well nume	ed until it ie	effectively dry
hecked By:	3	DE				oo parg	,	purge	- unit it is	enectively dry

Client:	Bankstown Ai	rport Pty Lim	ited				Job No.:			E35614P2
Project:	Skyfield Deve	lopment					Well No.:	THE THE COLUMN TWO		MW114
_ocation:	Bankstown Air	rport, BANK	STOWN, NSV	v	***************************************		Depth (m):			7m
VELL FINI	SH DETAILS									
	G	atic Cover	×	Standpip	е 🗆			Other (de	escribe)	
and the second	ELOPMENT DI	TAILS						o mer jac	.551150/	
Method:		0.	prelopme	ant oump	SWL - Be	fore (m):	0		2-73W	1
Date:			111/23	1 .	Time - Be	efore:			11:350	ina
Indertakei			Ó.		SWL - Af	ter (m):			6.42	m
	Removed:	**********	12L		Time - Af	ter:			11:63	
ID Readin		0	.2							
Comments		FMENTO								
CONTRACTOR	MENT MEASUR ume Removed	EMENIS			DO		EC			
	(L)		Temp (°C)		ng/L)		S/cm)	p	Н	Eh (mV)
0.0000000000000000000000000000000000000	2		21.2		0.1		1227	5	87	24.6
	4		20.7		· O		466		81	18.8
	6		20.6		5.4		275		15	220
	8		20.5				774		94	20.6
	10		20.8		-6	28410		7	02	21.4
	12		20.9		.9		2670	THE RESERVE OF THE PARTY OF THE	05	20.6
					effect	VELU	dry			
						7.5.7		19.3.5.2.2.2.2.2.3.3.2.2.5.1 		******************
					CESS THE SHOW AND					****************
							***************************************		1	
									***************************************	*************
								***************************************		***************************************
					************					***************************************

						emora novembra	**************************************			***************************************
										••••••
						VIII.				55 LL-111 LL-155 -> 11-41
							a 50 10 10 10 10 10 10 10 10 10 10 10 10 10		<u>-</u>	
									i	
			7.011.11.11.11.11.11.11.11.11.11.11.11.11							
						هـ	0.0000000000000000000000000000000000000			
omments:	Odours (YES	/ (NO), NA	PL/PSH (YES	NO),She	en (YES /(NO) Ste	ady State	Achieved	YES / NO)
SI Used:	5	/ O(A) C	it load	moch	avae	abec	non			
,	<u> </u>	20.03		. 1	Je	0.000	21 4 (0			
ested By:	P	D	Remar	ks:						
			- Stead	dy state condi						
			I D://		111 46	0.0	1100	F. 11.		
ate Tested:	.	4/11/23	- Differ	ence in the pl VL stable/not			amerence	in the cond	fuctiveity le	ss than 10%

8.5L=

Client:	Bankstown Airpor	t Pty Limited	Job No.:	i I I	E35614P2		
Project:	Skyfield Developn	nent		Well No.	£	7m	
ocation:		t, BANKSTOWN, NSW		Depth (n	n):		
VELL FINI	SH DETAILS				***		
		Cover	Standpipe		Other (describe)		
	ELOPMENT DETA		· James -		11: 40		
Method: Date:			MT DOWND SWL - B		4.62		
		21/11/21	Time – B		10.4	29m	
Jndertaken By: Ab Fotal Vol. Removed:			SWL - A		6.49	2M	
PID Reading (ppm):			Time – A	iter:	11:0	7am	
Comments							
	MENT MEASUREM	ENTS					
Vol	ume Removed	Temp (°C)	DO	EC	pН	Eh (mV)	
	(L)		(mg/L)	(µS/cm)			
		3-1-3	3.1	19156	5.91	0.3	
	,1	21.3	2.6	19013	5.88	-1.6	
	<i>P</i>		2.2	18906	6.89	-3.7	
	<u> </u>	21:4		18863	5.88	- 41	
	10	21.5	1.9	199222	5.83	-6:6.	
			+ 5	20154	5.82	83	
		21.6	18	20283	5.89	-8.1 -8.9 -8.3	
	18	21.7	1:9	20966	5.81		
	20	21-8	1.0	20613	6.80		
	22	22-1		20531	5.78	-4.3	
		72-2	+	20877	5.81 5.81	-9.5 -7.2 -9.4	
*********	24 26	12.3		21307	5.87		
	28	12-3	1.3	21444	5.80		
***************************************	30	22.3	1.8	21529	5.80	-13:3 -15:7 -17:3	
	32	22.3	1.8	21556	5.80		
************	<u>v.</u>		welleffecti		ļ	·	
***************************************			The reflecti	Tryary	†		
	**************					•	
				1	†		
		***************************************	***************************************	***************************************	***************************************		
							
					and the second of the second	<u> </u>	
omments	Odours (YES / (NO), NAPL/PSH (YES	(NO), Sheen (YES	(NO)) Steady State	Achieved (YES //I	NO))	
SI Used: ,	5 High	sit land	odanijao -la	Drivo d			
JI USBQ: (SILL LOUID ! L	echavge obs	Chred			
			waterian cle	201V			
ested By:	AD	Remar	ks:				
. = .	وا به ا		ly state conditions ence in the pH less thar	0.2 units, difference	e in the conductiveity	less than 10%	
ate Tested	: 21/1	and SV	VL stable/not in drawdo		o tilo conductivelty	1003 triail 1076	
			num 3 monitoring well vo	lumes purged uples	ss well purged uptil it	is effectively de-	
hecked By	: BP	I		pargou, arrior	pargod until It	on our ony uny	

~5L

Client:	Bankstown Airport	Pty Limited		Job No.	:	E35614P2			
Project:	Skyfield Developn	ent		Well No		MW126			
ocation:	Bankstown Airport	, BANKSTOWN, NSV	v			Depth (i	7m		
VELL FINI	ISH DETAILS								1 ///
		1577					T		
	Gatio	Cover 🗵	Standpip	еШ			Other (de	scribe)	
WELL DEV	ELOPMENT DETA		. Lances	louer p				10.00	
			nt pump	***********	efore (m):			6.50	
Jale. Jndertake		21/1/23		Time - B			***********	10:11	
Fotal Vol. I	· · · · · · · · · · · · · · · · · · ·	AD.		SWL - A	**************			6:66r	
				Time – A	πer: 			10:30	MOIN
PID Readir		0.4							
	MENT MEASUREM	ENTS				-			
Vol	ume Removed	Temp (°C)		00	E	С		Н	Eh (m)()
	(L)			ıg/L)	(µS/				Eh (mV)
		20.8	5			90		12	-13:5
	<u></u>	20 O		·O		30		07	-14.3
	3	19.9	**************	· ()		80		<u>09</u>	1-150
<u> </u>		19.7	<u> </u>	6.4		14293		03	15.2
	5	202				1012	C. C	0.3	-9.4
<u>\</u>		20.4	<u> </u>	<u>5·1</u>		16290		04	-2.9
		20:6		64		17364		08	-9.5
		21.2		.6	17/	18	6.	70	-13·D
	*****************	***	- LWCII	effect	VC14 O	lvy			

		***		***************************************					
					ļ				

					ļ				
					ļ	•••••			
		·			-				
					ļ				
				••••••	ļ				
***					4		4		
				•••••	ļ				
ommonto	Odoura IVES 1	IO),) NAPL/PSH (YE	S / 510)) Sha	· · · · · ·	(A)OV Store	d. C1-1	A a bit a consider	WED #1	<u></u>
omments	-		_					(YES /(NO
Si Used: (5 M	loderate sil	tload,	rech	avge (obse	erred		
,	·				V	900			
ested By:	L AD	Rema	rks:						
		- Stea	dy state condi						
ate Tested	s Joseph	f	rence in the p	H less thar		differenc	e in the con	ductiveity	less than 10%
Date Tested: 21		and S	and SWL stable/not in drawdown						
		,							

~31

Client: Bankstow			n Airport Pt	y Limited				Job No.:	E356	14P2	
Project:		Skyfield D	evelopmen	velopment					1/	MWIOZ	
Location:		Bankstow	n Airport, B	ANKSTOWN, N	NSW			Depth (m):	T	7m	
WELL FINIS									,		
	Gatic Cov				Standpipe				Other (desci	ribe)	
WELL PURG	SE DETAIL	LS:	0	111			SWL – Be	f	0.00		
Method:				itic brim	<u> </u>		Time - Be		3.23m		
Date:			24/11/2	.5				rore: Removed:	1:49pm		
Undertaken			AD.						***********		
Pump Progra PURGING / S		CMEASUD	EMENTS				PID (ppm)) <u>:</u>	0.2		
Time (r		SWL (m)	Vol (L)	Note	s	Temp (°C)	DO	EC (µS/cm)	pH	Eh (mV)	
1:5		3.37	0.5			21-4	(mg/L) 5.3	12422	6-70	-57.9	
1:5		3.58	1.5			20.9	41	22781	6.72	-64.4	
2:0		3.70	2.0			20.7	4.1	22783	6.72	-70-1	
2:0		3.82	3.0			20.7	4.1	22834	6.72	-75.2	
2:1		3.89	3.5			20.8	4.8	22648	6.73	-80.9	
2:1		3.90	4.0			20.8	4.5	23073	6.72	-82.3	
2:1		4.18	4.5			20.2	5.3	22688	6.72	-84.5	
2:		4.28	5.5			20.1	5.4	2 2655	6.72	- 85-7	
2:2		4.45	6.5			20.0	6.5	22669	672	-88.5	
2.3		4.48	7.0			20.4	5.3	22846	6.73	-89.4	
2:3		4.45	7.5		*************	20.5	4.9	23039	6.72	-91.3	
2.3		4.43	8.0	***************************************		20.7	4.9	23150	6.72	-922	
2:4		4.43	8.5	10.000.000.000.000.000.000.000.000.000.		20.7	4.9	23194	6.71	-92.4	
				Started so	molina						
								-			
							1	1			
								-			
					***********		************				
************	******		**********	***************************************			1				
*******		***********									

										1	
							na proportional de la composition	1.001			
						20220033000000000000000000000000000000	100000000000000000000000000000000000000				
				mber, 🏿 x BTE		<u> </u>		2× PFA.	Ś	d plastic	
Tested By: A	Alexis Diod	lati		Remarks:							
Date Tested:	1 1			- Steady stat	te conditions				L	h 400/	
Checked By:	B151 1				- difference in the pH less than 0.2 units, difference in conductivity less than 10% 10% and SWL stable/not in drawdown						
Date:	11.12.23			-1 -7 - 4 - 10 - 3 - 1	0.0010/110						

			COOK THE WHITE THE CONTROL	200		N.U.				
Client:	Bankstow	n Airport Pt	y Limited			Job No.:	E35614P2			
Project:	Skyfield D	evelopmer	nt			Well No.:		MW107		
Location:	Bankstow	n Airport, B	ANKSTOWN, NSW	Depth (m):		6m				
WELL FINISH										
Gatic C			Standpipe				Other (desc	ribe)		
WELL PURGE DET	AILS:		ety at a				0.0			
Method:		Perista	Hic pump		SWL - Be		2.13			
Date:		24/11/23	}		Time – Be	fore:	12:SIPm			
Undertaken By:		AD.	******************************		Total Vol I	Removed:	~50			
Pump Program No:		-			PID (ppm)	:	0.2			
PURGING / SAMPL	ING MEASUR	EMENTS								
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pН	Eh (mV)		
12:58	2.30	0.9		21.4	5.0	29139	3.96	-58.4		
1:02	2.42	1.5		21.0	8.5	28626	3.96	-61.3		
1:06	2-49	2.0		20.7	74	28236	3.97	-673		
1:10	2.52	2.5		20-7	7.3	28221	3.97	-69.7		
1:14	2:46	3.0		21.1	26-4	28464	3.97	-71.6		
1:18	2.44	3.5		21.2	18.1	28581	3.96	-77.2		
1:22	2.44			21.1	12.4		3.96	- 77.0		
1:44	2 99	4.0	Charles can alice		13.9	28436	276	122		
			Started sampling							
			<u> </u>							

ACTOCOCOUNTS HAND CHILD SOCIOUS HER										
			***************************************		**********	***************************************				

				001000000000000000000000000000000000000		egit hateng pi hateng dayi bada				
)			(
	•		The triangle of the second sec	110		2xPFAS		d plastic		
Tested By: Alexis Di	odati		Remarks:							
Date Tested: 24	11/23		- Steady state conditions			-				
			- difference in the pH less than 0.2 units, difference in conductivity less than 10%							
Checked By: BP			10% and SWL stable/no	ın arawao	WIT					

KEnvironments Client: E35614P2 Bankstown Airport Pty Limited Job No.: Project: Skyfield Development Well No.: MW114 Location: Bankstown Airport, BANKSTOWN, NSW Depth (m): 7m**WELL FINISH Gatic Cover** Standpipe Other (describe) WELL PURGE DETAILS: SWL - Before: Method: 3.21m Peristatic Dump Date: 24/11/23 Time - Before: 10:10am Undertaken By: Total Vol Removed: ~146 AD Pump Program No: 0.6 PID (ppm): **PURGING / SAMPLING MEASUREMENTS** SWL (m) Time (min) EC (µS/cm) Vol (L) Notes Temp (°C) Eh (mV) (mg/L) 0.5 6-81 10:18 26-7 21.0 0:27 3.67 1.5 28032 3.81 2.0 0:26 578 21.0 -31.0 28240 0:30 3.89 2.5 21.1 10. 32.3 0:34 3.95 3.0 21.0 10.8 3.5 -33.9 5.68 0:38 4-01 10.6 ():42 4.07 4.0 21-4 10.4 5.61 -34.9 4.13 5.56 0:46 4.2 21.5 28900 -34.9 10.1 10:50 4.19 4.4 21.9 9.1 29285 5.51 -34.6 10:54 4.23 29603 5.4 -34.0 4.6 4.28 0:58 38.4 29894 5.49 -34.0 4.8 11:02 30010 5.40 -34.8 4.30 5.0 5.34 11.06 4.36 5.2 22.7 43. 29928 -36.9 5.33 4.45 11:10 5.4 41.2 29424 -41.7 5.6 11:14 21.9 4.56 31.4 29167 5.34 -47.6 11:18 5.8 4.61 22.0 259 29244 -51.1 22.2 11:22 5.34 4.67 6.0 15.2 -543 29460 6.2 5.35 22.4 11:26 4.70 16.4 29693 -566 6.4 11:30 22.7 5.34 4.73 14.0 29979 -98.7 22.9 11:34 6.6 13.8 5.36 59.8 30274 4.76 6.8 5.35 11:38 23.0 13.7 30420 -60.2 16.8 1:42 7.0 22.0 4.88 29763 5.37 -59.9 11:46 7.5 5.02 21.5 17.3 29397 61.1 5.42 8.0 21.3 11:50 5.16 29439 18.2 -63.4 -62.9 8.2 5.19 14.2 11:54 21.5 29625 5.45 29.9 11:58 30238 5.24 -66.1 Comments: Odours (YES / (NO), NAPL/PSH (YES / (NO), Sheen (YES / (NO), Steady State Achieved (YES)/ NO) 2× PFAS Sampling Containers Used: x glass amber, x BTEX vials, x HNO3 plastic, x H2SO4 plastic, x unpreserved plastic YSI used: 💪 Tested By: Alexis Diodati Remarks: Steady state conditions Date Tested: 741123 difference in the pH less than 0.2 units, difference in conductivity less than 10% Checked By: BP 10% and SWL stable/not in drawdown 11.12.23 Date: 12:02 5.55 9.5 21.0 29948 5.68 17.4 -67-9 12:06 5.76 10.5 21.2 30564 5-81 -68.2 26.7 12:10 6.10 11.5 -71.4 21.2 27.7 30678 5.77

21.6

33-3

31289

5.82

-72-3

6.15

12:14

12.0

	11-11-11-11-11-11-11-11-11-11-11-11-11-									
Client:	Bankstow	n Airport Pt	y Limited			Job No.;	E35614P2			
Project:	Skyfield D	evelopmen	t			Well No.:	MWI			
Location:	Bankstow	n Airport, B	ANKSTOWN, NSW	numumumumum un en	n an	Depth (m):		17m		
WELL FINISH										
✓ Gatic Company		Standpipe				Other (descr	ibe)			
WELL PURGE DETA	AILS:	0 1 1					I 11			
			nc pump		SWL – Be		4.62			
Date:		24/11/23	<u>'</u>		Time – Be		9:15am	·		
Undertaken By:		HO,			Total Voi I	Removed:	~451			
Pump Program No:		-			PID (ppm)	:	0.1			
PURGING / SAMPLI	NG MEASUR	EMENTS								
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pН	Eh (mV)		
9:18	4.72	0.5	D 40 1	21.2	3.9	19270	5.83	-14.2		
9:22	4.78	1.5	10.	21.2	4.5	20096	5.82	-17.5		
9:26	4.80	2.0	· · · · · · · · · · · · · · · · · · ·	21.3	56	20360	5.82	- 187		
9:30	4.79	25		21.4	5.6	20591	5.83	-19.7		
9:34	4.79	3.0		21.4	5.2	20779	5.83	- 20.6		
9:38	4.79	3.5		21.4	5.3	20953	5.83	-213		
			Started sampling							
			Olor KOL ZOLVILDILATOL							
			J	*******						

								<u> </u>		
					- Continue C					
		6.0						7.000.1912.01.00		
*******************								†		
			(†		
								*		
								+		
								+		

						6				
			SH (YES / NO), Sheen (YE mber,			2x PFAS		plastic		
YSI used: 5		WOUP	102 - 1x cimber, L	XBTEX	, IXH	J03, 2x P	FAS	·		
Tested By: Alexis Did Date Tested: 기니	odati		Remarks: - Steady state conditions							
Checked By: BP	115		- difference in the pH less than 0.2 units, difference in conductivity less than 10%							
Date: 11 12 23			10% and SWL stable/no	t in arawdo	WΠ					

Client:	Bankstow	n Airport P	ly Limited		Job No.: E35614P2					
Project:		evelopmer				Well No.:	1W126			
Location:			ANKSTOWN, NSW			Depth (m):	4	7m		
WELL FINISH										
✓ Gatic C			Standpipe				Other (descri	be)		
WELL PURGE DETA	AILS:									
Method:		Peristo	Itic pump		SWL – Be	fore:	5.50m			
		24/11/2			Time – Be	efore:	7:56am			
Undertaken By:		A0	***************************************		Total Voi	Removed:	~5.5L	***************************************		
Pump Program No:		-			PID (ppm	;):	0.4	**********		
PURGING / SAMPLI	NG MEASUR	EMENTS					10 1			
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pН	Eh (mV)		
8:04	6.62	0.5		20.0	5.9	8113	6.01	86.2		
8:08	5.73	1.0		19.9	5.4	11707	6.00	57.7		
8:12	5.77	1.5	*************************	19.2	4.7	13762	5.96	44.7		
8:16	5.81	1.0		20.0	4.1	15394	5.94	35.4		
\$:20	5.83	2.5	***************************************	20.1	3.5	17036	5.92	26.6		
8:24	5.84	3.0		20-2	3-3	18373	5.91	19.3		
8.28	5.84	3.5	************************	20.2	3.5	19779	5.91	10.6		
8:32	5.84		***************************************			19927		9.4		
8:36		4.0	•	20.2	3.6		5.91			
0.36	5.84	4.5	Cia (a.l.a. a)`aa	20.2	4.2	20616	5.91	3.4		
			Started sampling							
			······································							
	**					.,				

	ns nianbarezano.									
				CONCESSION VERNING		************				

Comments: Odours	(VES / NO	NADI /D	SH (YES /(NO)) Sheen (YE	S (NOV S	loady State	Achieved	S// NO/	L		
Comments. Odours	(IES INO	B NAPLIP	STI (TES / NO) Sheen (YE	3 (NO) SI			Sy NO)			
Sampling Conta	ainers Used:	x glass a	mber, 니x BTEX vials, ㅣx	HNO3 plast	2 ic, x H25	XPFAS 604 plastic, / x	unpreserved	plastic		
YSI used: 5		I 55	101 = 1x amber, 4							
Tested By: Alexis Did	odati	*********	Remarks:							
Date Tested: 24	11/23		- Steady state conditions				at.de 1	400/		
Checked By: BP		**********		- difference in the pH less than 0.2 units, difference in conductivity less than 10% 10% and SWL stable/not in drawdown						
Date: 11.12.23		7077777777	- Stable/III	. III diawuu						

Appendix I: Guidelines and Reference Documents

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Australian and New Zealand Governments (ANZG), (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 - Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste (and the associated addendum)

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia