

尜SLR

Link Road Mixed Use Precinct

CFD-based Windshear and Turbulence Study

Bankstown Airport Proprietary Limited

c/o Forge Venture Management Level 7, 120 Sussex Street SYDNEY NSW 2000

Prepared by:

SLR Consulting Australia

Tenancy 202 Submarine School, Sub Base Platypus, 120 High Street, North Sydney NSW 2060, Australia

SLR Project No.: 610.031668

19 September 2024

Report Revision: R01-v1.0

Making Sustainability Happen

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
R01-v1.0	19 September 2024	Dr Neihad Al-Khalidy	Dr Peter Georgiou	Dr Neihad Al-Khalidy

Basis of Report

This report has been prepared by SLR Consulting Australia (SLR) with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Bankstown Airport Proprietary Limited (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

Executive Summary

SLR Consulting Australia Pty Ltd (SLR) has been commissioned by Bankstown Airport Limited (BAL) to undertake a windshear and wind turbulence report for a proposed mixed use precinct at Link Road, Bankstown Airport.

The proposed site is located at the northeastern side of the airport's approach landing paths from the northwest – refer **Figure 1**.

BAL has commissioned a quantitative Computational Fluid Dynamics (CFD) modelling assessment and report on the windshear and wake turbulence effects of the proposed aviation facility development.

The assessment is conducted in accordance with the National Airports Safeguarding Framework (NASF) Guideline B, 2018 – *Managing the Risk of Building Generated Windshear and Turbulence at Airports* - specifically to address wind impacts on runways at Bankstown Airport. The NASF-B (2018) criteria are:

- The "7-knot alongwind criterion" the variation in mean wind speed due to wind disturbing structures must remain below 7 kt (3.6 m/s) along the aircraft trajectory at heights below 200 ft. The speed deficit change of 7 kt must take place over a distance of at least 100 m.
- The "6-knot crosswind criterion" the variation in mean wind speed due to wind disturbing structures must remain below 6 kt across the aircraft trajectory at heights below 200 ft. The speed deficit change of 6 kt must take place over a distance of at least 100 m.
- The *"4-knot turbulence criterion"* the standard deviation of wind speed must remain below 4kt at heights below 200 ft.

The instability which building-induced wake effects can cause to an aircraft is significantly reduced once the airplane has touched down (upon landing) or is at reasonable height (200 ft off the ground prior to landing). After touch-down, the aircraft has increased stability/support from contact with the runway pavement. Above 200 ft, the consequences of a drop in altitude or a change in wind bank are considerably less and the pilot has increased latitude and hence time to correct for any unforeseen induced effects on the aircraft prior to touch-down.

Bankstown Airport is situated southwest of the Sydney CBD and comprises three runways (11R/29L, 11L/29R and 11C/29C) suitable for fixed wing aircraft movements and aeronautical facilities required for substantial rotary wing movements as well. Night operations on 11C/29C comprise approximately 2.5% of all movements.

In relation to the location of the proposed development, the wind directions deemed to have the greatest potential impact on the Runways are the winds originating from north-northeast $(22.5^{\circ}\pm22.5^{\circ})$.

The study of the current and post-development winds has been undertaken using a quantitative CFD analysis approach. The reference approach wind speed for this study is 20 kt at 10 m height taking into account the local exposure factors by wind direction. Crosswinds at and above 20 kt for the relevant northeast wind direction for the current study have zero frequency of occurrence.

• Bureau of Meteorology (BoM) records at Bankstown Airport, covering a 23-year period from 1999-2021 inclusive, show that, from the north-northeast (22.5°±22.5°), there were 0 hours where the mean wind speed exceeded 20 kt.

Assessments in the current report were made for the worst-case condition (ie covering all possible flight landing paths), starting from an altitude band of 30 m. The wind deficit at an altitude >30 m is negligible due to the proposed building's height and runway location. Offshoot landing is not analysed due to the location of the proposed building. The relationship distance-wise of the proposed development to the nearest Runway 11L can be seen in **Figure 2**.

While SLR's measurement positions do not cover the NASF-B "900 m before the threshold and up to 500 m along the runways from the threshold at 100 m intervals", SLR assessed the results at more than 50 horizontal landing intervals to better capture the worst-case scenario. The results (as confirmed by previous SLR studies) show that modelling a greater number of possible landing scenarios in areas where the wake occurs (for example conducting modelling along the runway at horizontal intervals of 25 m or 50 m is more critical than presenting the results at every 100 m between changes -900 m to +500 m. In particular, the peak turbulence may not be captured if the results are presented every 100 m, subject to geometry, runway and building orientation.

The following major conclusions have been reached based on results of simulations for the critical wind directions and assessment of Bankstown Airport BoM Weather Station data.

The current study has involved the modelling of the following built environment "scenarios":

- "Current" the existing built environment (as of August 2024) including recently approved developments. Refer **Figure 5A**
- "Post development Proposed" including Current + Proposed Development. Refer Figure 5B and Figure 6

Existing Wind Conditions

Mean Wind Speed at 10 m Height

- There were 0 hours where the mean wind speed exceeded 20 kt taking into account wind directions 22.5°±22.5° over the 23-year BoM record period.
- There were 8 hours per year where the mean wind speed exceeded 15 kt taking into account wind directions 22.5°±22.5° over the 23-year BoM record period.

Runway 11R/29L and Runway 11L/29R operate during daylight only from 06:00 hrs to 18:00 hrs while 11C/29C operates 24 hours a day. The occurrence of the exceedance for 15 kt is reduced to 6-7 hours per year when only daylight hours are included in SLR's assessment (refer **Section 3.2.1**)

Turbulence Exceedance at the Anemometer Location

- There were approximately 1,600 occasions during the 23-year BoM record period (69.5 per year) where natural turbulence exceeded 4 kt taking into account ALL wind directions.
- There were 2 occasions per year where natural turbulence exceeded 4 kt from winds orientating from 22.5°±22.5°.

It should be noted that while many of those exceedance "occasions" occurred on different days, some occurred in consecutive hours on the same day during the passage of major windstorm events.

Future Wind Conditions (Associated with the Post-Post Development Scenario)

The following major conclusions have been reached based on results of CFD simulations for the analysed wind directions:

Windshear – Approaching Wind Speed = 20 Knot at 10m above ground

- A number of warehouses and low-rise buildings are located to the northeast side of the runways.
- The variation in the mean wind speed for the existing and post development scenarios is either below 6 kt or impacted less than 100 m at a height below 60 m. The NASF-B windshear criterion is therefore not exceeded. due to the following:
 - Location of the building (eg the buildings are located behind existing buildings).
 - Relatively low building height (10.6 m)

Wind Turbulence – Approaching Wind Speed = 20 Knot at 10m above ground

- In the CFD modelling, the trees and vegetation surrounding the site were removed primarily to reduce computational time, noting that this removal makes the model slightly conservative as the addition of vegetation would typically reduce ground level wind speeds.
- The proposed development will have a minor impact on the peak turbulence levels taking into account 22.5°±22.5° wind directions.
- Peak (instantaneous) turbulence levels are increased by a modest amount for the wind 0° and 45° and slightly reduced for infrequent wind at 22.5°.
 - Wind angle 0°
 - 0.7 kt for 11L
 - 0.2 kt for 11C
 - Wind angle 22.5°
 - -0.4 kt for 11L
 - -0.25 kt for 11C
 - \circ Wind angle 45°
 - 0.1 kt for 11L
 - 0 kt for 11C

Summary Results

	Are the Complian Satis	NASF-B ce Criteria fied?	Runway 11L	Runway 11C
Scenario	Cross-Wind Turbulence 6 kt 4 kt		No of Hours per Year Turbulence Criterion Exceeded 6 am - 6 pm	No of Hours per Year Turbulence Criterion Exceeded 6 am - 6 pm
Current	Yes	No	5 ^{1,2}	5 ¹
Post Development	Yes	No	5 ^{1,2}	4 ¹

The results of simulations for the worst-case scenario are summarised below.

Note 1: The results take into account $22.2\pm22.5^{\circ}$ wind directions.

Note 2: Runway 11L operates during the daytime (6:00 am to 6:00 pm) ONLY. Refer Table 7 and Table 8

Recommendations

To mitigate building-induced wake turbulence, it's recommended to implement operational risk mitigation measures accepted by the airport operator and CASA when winds exceed 12.8 kt from the NNE (wind angle $22.5^{\circ} \pm 22.5^{\circ}$).

The addition of the proposed development has a minor impact on the peak turbulence levels, ie it increases the peak turbulence level by ~0.7 kt for the worst-case scenario but the number of exceedances for the current and post development scenarios is similar taking into account all analysed wind directions.

Table of Contents

Basi	s of Reporti
Exec	utive Summaryii
Acro	nyms and Abbreviationsix
1.0	INTRODUCTION10
1.1	Development Site
2.0	ACCEPTABILITY CRITERIA
2.1	The National Airports Safeguarding Framework (NASF) Guideline B - 201812
3.0	LOCAL EXPOSURE OF THE SITE
3.1	Critical Wind Directions for the Site
3.2	Bankstown Airport Bureau of Meteorology Data13
3.2.1	Mean Wind Speed Exceedance13
3.2.2	Natural and Existing Built Environment Turbulence Exceedance16
4.0	CFD MODELLING, ASSUMPTIONS AND ANALYSIS18
4.1	Modelling18
4.2	Wind Condition
4.3	Turbulence Model21
4.4	Discretization22
5.0	RESULTS AND DISCUSSION23
5.1	Runway Modelling23
5.2	Wind Directions Analysed23
5.3	Wind Angle: North (0°)23
5.3.1	Windshear Assessment23
5.3.2	Turbulence Assessment
5.4	Wind Angle: North-Northeast (22.5°)
5.4.1	Windshear Assessment
5.4.2	Turbulence Assessment
5.5	Wind Angle: East Northeast (45°)
5.5.1	Windshear Assessment
5.5.2	Turbulence Assessment
5.6	Summary Results of Simulations
5.6.1	Windshear – Approaching Wind Speed = 20 kt at 10m above Ground
5.6.2	Turbulence - Approaching Wind Speed = 20 kt at 10m above Ground
6.0	Mitigation Option for the current and Post Development structures44
7.0	Conclusions45
8.0	Feedback

Tables in Text

Table 1	Mean Wind Speed Exceedances (Hours/5-Year Period) versus Wind Direction (all hours of the day)
Table 2	Mean Wind Speed Exceedance Probability versus Wind Direction (all hours of the day)
Table 3	Total Number of Movements at Bankstown Airport in 2014 15
Table 4	Mean Wind Speed Exceedances (Hours/5-Year Period) versus Wind Direction (Daylight Hours only)
Table 5	Mean Wind Speed Exceedance Probability versus Wind Direction (Daylight Hours only)
Table 6	4-knot Turbulence Exceedance Probability versus Wind Direction
Table 7	Predicted Turbulence vs Approaching Cross-wind (ALL flight Paths) - Runway 11L
Table 8	Predicted Turbulence vs Approaching Cross-wind (NNE Wind) for the Worst Case Scenario – Runway 11C

Figures in Text

Figure 1	Aerial View of Proposed Development Site 11
Figure 2	Aerial View of Proposed Development Site Showing Location to the Runway Centreline
Figure 3	NASF-B (2018) Windshear Criteria 12
Figure 4	4 knot Turbulence Exceedance Probability in 1-Year – Bankstown Airport BOM Weather Data
Figure 5	Development Site and Surrounds 19
Figure 6	3D Model of the Site and Surrounds, Including Modelled Site Topography 20
Figure 7	3D Model of the Proposed Development
Figure 8	Possible Landing Scenarios for a 3° Glide Landing Path 23
Figure 9	Velocity Vector (m/s) at CFD Model RL 20 m - DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 20°
Figure 10	Velocity Vector Contoured by Velocity Magnitude (m/s) - Wind Angle = 0° 26
Figure 11	Velocity Contours at a 2D Vertical Section Contoured by Velocity Magnitude (m/s) - Wind Angle = 0°
Figure 12	Comparison of the Normal Velocity Component (m/s) – Runway 11 L (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 0°)
Figure 13	Comparison of the Normal Velocity Component (m/s) – Runway 11C (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 0°)
Figure 14	RMS (Standard Deviation) Value in Knot across the Aircraft Trajectory at Runway 11L – DDES Turbulence Model (Approaching Wind = 20 Knot at 10 m above Ground, Wind Angle = 0°)

Figure 15	Velocity Vector (m/s) at RL 10 m - DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 22.5°
Figure 16	Comparison of the Normal Velocity Component (m/s) – Runway 11 L (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 22.5°)
Figure 17	Comparison of the Normal Velocity Magnitude (m/s) – Runway 11C – (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 22.5°)
Figure 18	RMS (Standard Deviation) Value in Knot across the Aircraft Trajectory at 11 L Runway – DES Turbulence Model (Approaching Wind = 20 Knot at 10 m above Ground, Wind Angle = 22.5°)
Figure 19	Velocity Vector (m/s) at RL 10m - DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 45°
Figure 19	Comparison of the Normal Velocity Component (m/s) – Runway 11 L (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 45°)
Figure 20	Comparison of the Normal Velocity Component (m/s) – Runway 11 C (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 45°) 40
Figure 21	RMS (Standard Deviation) Value in Knot across the Aircraft Trajectory at Runway 11 L– DES Turbulence Model (Approaching Wind = 20 Knot at 10 m above Ground, Wind Angle = 45°)

BAL	Bankstown Airport Propriety Limited
BoM	Bureau of Meteorology
CASA	Civil Aviation Safety Authority
NASF	National Aviation Safeguarding Framework
kt	knot (nautical mile per hour) $- 1$ kt = 0.5144 m/sec
SLR	SLR Consulting Australia Pty Ltd

Acronyms and Abbreviations

1.0 INTRODUCTION

SLR Consulting Australia Pty Ltd (SLR) has been commissioned by Bankstown Airport Limited (BAL) to undertake a wind shear and wind turbulence report for a proposed mixed-use precinct at Link Road, Bankstown Airport.

The proposed site is located at the northeastern side of the airport's approach landing paths from the northwest – refer **Figure 1** and **Figure 2**.

The proposed building would infringe the 1 in 35 surface for Runways 11L, 11C and 11R by a maximum of approximately 5.7 m, 3.2 m and 0.6 m, respectively.

Accordingly, BAL has commissioned a quantitative Computational Fluid Dynamics (CFD) modelling assessment and report on the potential windshear and wake turbulence effects of the proposed development.

- The main operational runway at Bankstown Airport is Runway 11C/29C. The runway is 1416 m in length and 30 m in width.
- Runway 11L/29R has primary and secondary operations which operate both independently and in conjunction with Bankstown's main runway.
- The southern Runway 11R/29L, at 1038 m in length and 23 m wide, is only suitable for single and small twin engine light aircraft such as Cessna 172, 206 and Piper aircraft.

Given the proposed development's position relative to the typical landing zone range of runways, simulations for the worst wind directions from the north-northeast (wind angle 22.5°±22.5°) have been modelled.

The objective of this study is to undertake a quantitative Computational Fluid Dynamics (CFD) analysis approach of current and post-development for the most critical crosswind directions.

1.1 Development Site

The proposed site area is 35,800 m², and the design involves developing a warehouse, retail and office spaces and childcare facilities.

- Existing IGA: 1998 m²
- Warehouse; 15,227 m²
- Office: 1,000 m²
- Retail; 990 m²
- Childcare: 744 m²

Figure 1 Aerial View of Proposed Development Site

Figure 2 Aerial View of Proposed Development Site Showing Location to the Runway Centreline.

2.0 ACCEPTABILITY CRITERIA

2.1 The National Airports Safeguarding Framework (NASF) Guideline B - 2018

The assessment has been conducted in accordance with the National Airports Safeguarding Framework (NASF) Guideline B, 2018 – *Managing the Risk of Building Generated Windshear and Turbulence at Airports* specifically to address wind impacts on Bankstown Airport runways which state:

- The "7-knot alongwind criterion" the variation in mean wind speed due to wind disturbing structures must remain below 7 kt (3.6 m/s) along the aircraft trajectory at heights below 200 ft. The speed deficit change of 7 kt must take place over a distance of at least 100 m.
- The *"6-knot crosswind criterion"* the variation in mean wind speed due to wind disturbing structures must remain below 6 kt across the aircraft trajectory at heights below 200 ft. The speed deficit change of 6 kt must take place over a distance of at least 100 m.
- The *"4-knot turbulence criterion"* the standard deviation of wind speed must remain below 4kt at heights below 200 ft.

Figure 3 NASF-B (2018) Windshear Criteria

3.0 LOCAL EXPOSURE OF THE SITE

3.1 Critical Wind Directions for the Site

Due to the relative position of proposed aviation facility to the runway direction, the crosswind directions for the windshear and turbulence are between North (0°) and East (90°).

3.2 Bankstown Airport Bureau of Meteorology Data

3.2.1 Mean Wind Speed Exceedance

SLR has analysed long-term wind records at the Bankstown Airport Bureau of Meteorology (BoM) Weather Station site. This dataset contains records at hourly intervals of:

- Mean Wind Speed average wind speed during the 60-minute period.
- Gust Wind Speed peak 2-3 second gust occurring (anytime) within the 60-minute period.
- Wind Direction average wind direction during the 60-minute period.

From this dataset, SLR has derived the occurrence of the exceedance for various wind speed levels at a 10 m reference height (which is close to the proposed building height) where the angle bandwidth is $\pm 22.5^{\circ}$. This covers wind directions from 0° to 360° - refer **Table 1**.

Table 1Mean Wind Speed Exceedances (Hours/5-Year Period) versus Wind Direction
(all hours of the day)

10m ht MEAN	Wind Direction (±22.5°)										
Wind Speed (kt)	N 0°	NE 45°	E 90°	SE 135°	S 180°	SW 225°	W 270°	NW 315°	ALL		
5	1912	3351	2807	4429	3171	3339	2794	3022	24825		
10	313	1260	1356	2848	1481	902	1125	587	9872		
15	37	62	107	862	443	173	390	173	2247		
20	0	0	7	115	89	10	74	26	321		
25	0	0	0	12	7	0	7	1	27		

Table 1 shows the following:

All Wind Directions

- There were 27 hours total (5.4 per year) where the mean wind speed exceeded 25 kt taking into account ALL wind directions.
- There were 321 hours total (64 per year) where the mean wind speed exceeded 20 kt taking into account ALL wind directions.
- There were 2,247 hours total (449 per year) where the mean wind speed exceeded 15 kt taking into account ALL wind directions.

Northeast Winds

- There were NO hours where the mean wind speed exceeded 25 kt.
- There were NO hours where the mean wind speed exceeded 20 kt.
- There were 49.5 hours (12 per year) where the mean wind speed exceeded 15 kt.

It should be borne in mind that the above "hours" of exceedance do not translate into the same number of discrete hourly "windstorm events". There were a number of occasions during the passage of extreme windstorm systems, when these exceedances occurred during consecutive hours on the same day, ie associated with the same windstorm.

One such example occurred during the passage of a strong low pressure system on 29 October 2013. The wind remained above 20 kt for a continuous 6-hour period between Noon and 6:00 pm that day. Accordingly, this one "event" accounted for 6 hourly exceedances of 20 kt.

The data shown in **Table 1** has been reproduced in **Table 2**, this time as an annual exceedance probability of occurrence. The following conclusions can be reached from **Table 1** and **Table 2**.

- The probability of a 20 kt or higher mean wind speed from the NE±22.5° is 0.0%.
- The probability of exceeding 15 kt from the northeast° is approximately 0.14%, ie a 1.4 in 1000 chance of exceeding 15 kt from that direction.

Table 2Mean Wind Speed Exceedance Probability versus Wind Direction (all hours of
the day)

10m ht MEAN	Wind Direction (±22.5°)										
Wind Speed (kt)	N 0°	NE 45°	E 90°	SE 135°	S 180°	SW 225°	W 270°	NW 315°	ALL		
5	4.36%	7.65%	6.41%	10.11%	7.24%	7.62%	6.38%	6.90%	56.6%		
10	0.71%	2.88%	3.09%	6.50%	3.38%	2.06%	2.57%	1.34%	22.5%		
15	0.08%	0.14%	0.24%	1.97%	1.01%	0.39%	0.89%	0.39%	5.13%		
20	0.000%	0.000%	0.016%	0.262%	0.203%	0.023%	0.169%	0.059%	0.732%		
25	0.000%	0.000%	0.000%	0.027%	0.016%	0.000%	0.016%	0.002%	0.062%		

Table 3 shows the annual number of movements at Bankstown Airport in 2014. Runway 11R/29Land Runway 11L/29R operate during daylight only from 0600hr to 1800hr while 11C/29C operates24 hours per day.As per **Table 3**, the annual number of movements in 2014 was:

- 116,240 on Runway 11R/29L.
- 32,141 on Runway 11C/29C (with 804 movements occurring at night-time).
- 47,220 on Runway 11L/29R.

Category	Movements	HLS	NWS	11L	11C	11R	29L	29C	29R
Fixed Wing	79,362			23.8%	16.2%			24.3%	35.7%
Fixed Wing Training	116,240					40%	60%		
Helicopters	26,217	100%							
Rescue Helicopters	1,360			30%	10%		20%		40%
Helicopter Training	6,377		100%						
TOTAL in 2014	229,556								

Table 3 Total Number of Movements at Bankstown Airport in 2014

Table 3 shows that night-time activity at Runway 11C/29C is approximately 2.5% of all movements. Accordingly, the data shown in **Table 1** and **Table 2** have been reproduced in **Table 4** and **Table 5**, this time only for daylight hours.

Table 4Mean Wind Speed Exceedances (Hours/5-Year Period) versus Wind Direction
(Daylight Hours only)

10m ht MEAN	Wind Direction (±22.5°)										
Wind Speed (kt)	N 0°	NE 45°	E 90°	SE 135°	S 180°	SW 225°	W 270°	NW 315°	ALL		
5	1288	1418	1584	2396	1690	1959	1792	2087	14214		
10	242	644	907	1715	950	633	736	425	6252		
15	35	44	90	605	315	129	304	155	1677		
20	0	0	3	85	62	8	66	25	249		
25	0	0	0	7	6	0	7	1	21		

Table 5Mean Wind Speed Exceedance Probability versus Wind Direction (Daylight
Hours only)

10m ht MEAN	Wind Direction (±22.5°)										
Wind Speed (kt)	N 0°	NE 45°	E 90°	SE 135°	S 180°	SW 225°	W 270°	NW 315°	ALL		
5	2.94%	3.24%	3.61%	5.47%	3.86%	4.47%	4.09%	4.76%	32.4%		
10	0.55%	1.47%	2.07%	3.91%	2.17%	1.44%	1.68%	0.97%	14.3%		
15	0.080%	0.100%	0.205%	1.381%	0.719%	0.294%	0.694%	0.354%	3.83%		
20	0.000%	0.000%	0.007%	0.194%	0.141%	0.018%	0.151%	0.057%	0.568%		
25	0.000%	0.000%	0.000%	0.016%	0.014%	0.000%	0.016%	0.002%	0.048%		

 Table 4 and Table 5 show the following:

ALL Wind Directions

- There were 21 hours total (4.2 per year) where the mean wind speed exceeded 25 kt.
- There were 249 hours total (50 per year) where the mean wind speed exceeded 20 kt.
- There were 1,667 hours total (333 per year) where the mean wind speed exceeded 15 kt.

NE ±22.5°

- There were NO hours where the mean wind speed exceeded 25 kt.
- There were NO hours where the mean wind speed exceeded 20 kt.
- There were 44 hours (8.8 per year) where the mean wind speed exceeded 15 kt.

With regard to the limits of the approaching wind speed, SLR has been advised that there are practical aspects of the runways becoming inoperable in high crosswinds at and above 25 kt.

3.2.2 Natural and Existing Built Environment Turbulence Exceedance

SLR's analysis of the Bankstown Airport Bureau of Meteorology (BoM) Weather Station data has yielded the annual exceedance characteristics of 4 kt turbulence shown in **Table 6** and **Figure 4**

ALL Wind Directions

• There were 66 hours per year where 4 kt turbulence was exceeded. While many of those exceedances occurred on different days, some would have occurred in consecutive hours during the passage of major windstorm events.

22.5 ±22.5°

• There were 2.5 hours per year where 4 kt turbulence was exceeded. Again, in any one year, these may have occurred on consecutive hours during the passage of a major windstorm event.

Table 6 4-knot Turbulence Exceedance Probability versus Wind Direction

Annual	Wind Direction (±22.5°)								
Exceedances	N 0°	NE 45°	E 90°	SE 135°	S 180°	SW 225°	W 270°	NW 315°	ALL
No / Year	2.2	2.2	3.0	5.4	13.8	8.8	20.2	10.2	65.8
%age	0.025%	0.025%	0.034%	0.062%	0.158%	0.100%	0.231%	0.116%	0.025%

4.0 CFD MODELLING, ASSUMPTIONS AND ANALYSIS

SLR has modelled the proposed development and the surrounds using the Creo Parametric software package. This was then imported to ANSYS to prepare the model for solving.

The surrounding buildings and airport runways were included in the study. The model was then moved to the specialised world leading CFD software ANSYS-FLUENT for computation.

Ambient wind profiles have been created for all critical wind directions.

Wind speeds were then determined at the runways relative for the current and post development scenarios.

4.1 Modelling

A 3D model of the development area and surrounding buildings was created from sketches and 2D AutoCAD files supplied by Forge (received 5/7/2024).

Figures 5 to 7 show the geometry for CFD Modelling. The developed model accounts for all small features of the proposed development (e.g., parapet, gaps, etc.).

SLR has also reviewed the survey data for the areas of interest. The available survey data for the proposed development site shows elevated ground at the areas of interest. All complex topographic features are also included in the current and post-development scenarios (Refer **Figure 5**).

The CFD analysis used a calculation domain 2,200 m long, 2,744 m wide, and 400 m high.

4.2 Wind Condition

The results in the following sections are presented for a reference approach wind speed of 20 kt at 10 m height taking into account the local exposure factors by wind direction.

SLR's analysis of Bankstown Airport Bureau of Meteorology (BoM) Weather Station data shows that there were 0 hours total (refer **Table 1**) where the mean wind speed exceeded 20 kt from the relevant critical wind direction of $22.5^{\circ}\pm22.5^{\circ}$. The results in this study will be presented for the worst-case wind conditions.

At the upwind free boundary inlet, velocity profiles were derived from the Australian Wind Code, AS1170.2. For example, the approaching wind speed is 20 kt at 10 m height with a vertical profile determined by the surrounding terrain in accordance with the Terrain Category classification contained in the Code. The effect of terrain roughness on wind speed is then used to obtain the variation in wind speed with height.

Figure 5 Development Site and Surrounds

Figure 6 3D Model of the Site and Surrounds, Including Modelled Site Topography

Figure 7 3D Model of the Proposed Development

4.3 Turbulence Model

For the current study, SLR used an advanced Delayed Detached Eddy Simulation (DDES) turbulence model to capture the unsteadiness arising from turbulence for a number of critical wind directions.

- The proposed DDES (hybrid modelling mythology) approach combines the benefits of Reynolds-averaged Navier–Stokes equations (or RANS equations) and LES while minimising their disadvantages
- While the RANS (Realizable k-epsilon in this study) can achieve good prediction for attached boundary layers, LES can capture unsteady motions of large eddies in separated regions.
- The DDES can also be coupled with different turbulence model (eg SST k-omega, Spalart Allmaras, etc).

This approach is significantly more reliable than the RANS approach for the turbulence prediction. However, it is important to understand that the DDES method is substantially more computationally demanding than RANS simulations. SLR has used a very small-time step in the order of 0.1 sec, to provide an adequate temporal resolution of the flow as it passes through each cell at the area of interest.

It is anticipated that the DDES may generate a more conservative turbulence data near the ground when compared to LES.

4.4 Discretization

The quality of the mesh is a critical aspect of the overall numerical simulation and it has a significant impact on the accuracy of the results and solver run time.

A mesh sensitivity assessment has been carried out for the current and post development scenarios. A procedure has been developed to adopt very fine meshes at areas of interest including site topography and analysed flight paths.

For all cases in this study, polyhedral elements with a total number of 27,071,370 nodes for the post-development scenario and 29,076,570 nodes for the current scenario were used to cover the computational domain. This is significantly higher than the number of cells typically used in RANS CFD Wind Studies.

Polyhedral cells are especially beneficial for handling recirculating flows and used to provide more accurate results than even hexahedra mesh. For a hexahedral cell, there are three optimal flow directions which lead to the maximum accuracy while for a polyhedron, with 12 faces, there are six optimal directions which, together with the larger number of neighbours, lead to a more accurate solution with a lower cell count.

5.0 **RESULTS AND DISCUSSION**

5.1 Runway Modelling

The flight path glide angle for landing can vary between 2.7 degrees and 4 degrees, with 3 degrees considered as the average. Three critical landing scenarios per runway with an approaching angle of 3 degrees are analysed in this study – refer **Figure 8**. Offshoot landing is not analysed due to location of the proposed building.

Figure 8 Possible Landing Scenarios for a 3° Glide Landing Path

5.2 Wind Directions Analysed

Due to the relative position of buildings to the runway direction, the following wind directions for the windshear and turbulence are analysed in this study:

- North Wind (Wind Angle 0o)
- North-Northeast Wind (Wind Angle = 22.50)
- Northeast Wind (Wind Angle = 450)

5.3 Wind Angle: North (0°)

5.3.1 Windshear Assessment

Figure 9 shows the velocity vector results of the CFD simulations at CFD Model RL 10m. Dark blue represents still conditions at 0 m/s and red representing the strongest wind speed. The following conclusions can be reached from the above figure:

- The CFD model captures the fluid flow characteristics in significant detail. Wind is approaching the site from the north at 0° as per the given boundary condition. Wind is then accelerated near the edges and stagnated and recirculated behind the buildings.
- The localised impact of the proposed development is shown in Figure 9B.

There is a minor variation in wind speeds along the width of the runways. Refer Figure 10

A comparison for the windshear shows that the proposed development will have a minor impact at the runways and that disturbance to the approaching mean wind speed is localised due to the size of the proposed building, eg building height = 13.15 m (Refer Figure 1). Figure 11 can also be viewed showing the stability of mean wind speed profiles throughout the domain in areas not affected by buildings.

The crosswind variation in mean wind speed due to wind-disturbing structure must remain below 6 kt along the aircraft trajectory at a height below 200 ft (60 m). The speed change of 6 kt must take place over a distance of at least 100 m (NASF-B, 2018). The aircraft instability is significantly reduced once the airplane has touched down or is above 200 feet off the ground after take-off.

The flight path angle for landing can vary between 2.7 degrees and 4 degrees, with 3 degrees considered as the average. Critical landing scenarios with an approaching angle of 3 degrees are analysed in this study. Offshoot landing is not analysed due to location of the proposed building. The location of the proposed development with respect to the nearest landing runways is shown in **Figure 2**. Landing paths are shown in **Figure 8**.

A comparison for the wind along the aircraft trajectory for the above paths is shown in **Figure 12** and **Figure 13**. The following comments are made with regards to the above graphs:

- The graphs present the results at variable height of the aircraft trajectory (3-degree glide path).
- The presentations are made for the worst-case condition, starting from an altitude band of 30 m or similar with the focus on the impacted areas. The mean wind speed deficit at an altitude >30 m is negligible due to the building's height and runway's relative locations.
- The windshear calculation is based on the normal component of the approaching wind.

The following clarifications are provided with regards to Figure 12:

- Runway 11L starts at position Y=940m for flight path 1 the aircraft lands at position 890 m for flight path 1-11L.
- The approaching mean wind speed at 10 m above ground is 20 kt. Wind speed increases with height. The presented results accounts for site topography and shielding from the surrounding buildings.
- Impact of the existing built environment is captured by the CFD model (Refer Figure 12A).
- The highest mean wind speed deficit is obtained at the wake of buildings (existing and/or proposed development).
- The mean wind speed at the ground = 0. All tested points in **Figure 12** are located above ground.

The following conclusions can be reached from Figure 12 and Figure 13:

• The variation in the mean wind speed for the existing and post-development scenarios is either below 6 kt or impacted less than 100m at a height below 60 m. The NASF-B windshear criterion is therefore, not exceeded.

Figure 11 Velocity Contours at a 2D Vertical Section Contoured by Velocity Magnitude (m/s) - Wind Angle = 0°

Figure 12 Comparison of the Normal Velocity Component (m/s) – Runway 11 L (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 0°)

Figure 13 Comparison of the Normal Velocity Component (m/s) – Runway 11C (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 0°)

5.3.2 Turbulence Assessment

The NASF Guideline B, 2018 adopts the NLR additional turbulence criteria:

• The "4-knot turbulence criterion" – i.e. the standard deviation of wind speed must remain below 4 kt at heights below 200ft.

The turbulence or root-mean-square (RMS or σ_V) value along the aircraft trajectory for the flight paths is predicted using the following relationship.

$$\sigma_V = \sqrt{\frac{\sum (V - \bar{V})^2}{N}}$$

where V = instantaneous wind speed

 \overline{V} = mean wind speed

N = no of samples

SLR assumes that the criterion is triggered if 4 kt is exceeded <u>at any point</u> along the aircraft trajectory for the analysed flight paths.

The results of the simulations for turbulence level are shown in Figure 14

Runway 11 L

- The peak RMS (standard deviation or turbulence) is above the 4 kt for an approaching wind of 20 kt at 10 m above ground for the current and post development scenarios.
- The peak localised (instantaneous) turbulence for the existing scenario is 4.5 kt and the averaged turbulence over a distance of 100 m spanning the peak is below 4 kt.
- The location of the peak turbulence changes due to the addition of the proposed building.
- The peak localised (instantaneous) turbulence for the post development is 5.2 kt and the averaged turbulence over a distance of 100 m spanning the peak is below 4 kt.
- The peak turbulence is increased by 0.7 kt due to the addition of the proposed development.

Runway 11 C

• The peak localised (instantaneous) turbulence for the existing and proposed scenarios is 4.6 kt and 4.8 kt, respectively.

5.4 Wind Angle: North-Northeast (22.5°)

Figure 15 shows the wind speeds on 0-14 m/s colour coded scales.

- The CFD model captures the fluid flow characteristics in significant detail. Wind is approaching the site from the NNE at 22.5° as per the given boundary condition. Wind is then accelerated near the edges and stagnated and recirculated behind the buildings.
- There is approximately 0.6 m/s reduction in the mean speed at 11 L Runway.
- The localised wake behind the proposed facility is shown in **Figure 15B**.

5.4.1 Windshear Assessment

A comparison for the wind along the aircraft trajectory for the flight paths in **Figure 8** is shown in **Figure 16** and **Figure 17**. The following conclusions can be reached from the above figures:

• The variation in the mean wind speed for the existing and post development scenarios is either below 6 kt or impacted less than 100 m at a height below 60 m. The NASF-B windshear criterion is therefore not exceeded.

5.4.2 Turbulence Assessment

The turbulence or root-mean-square (RMS) value along the aircraft trajectory for the flight paths in **Figure 8** are shown in **Figure 18**.

Runway 11 L

- The peak RMS (standard deviation or turbulence) is above the 4 kt for an approaching wind of 20 kt at 10 m above ground for the current and post development scenarios.
- The localised (instantaneous) turbulence for the existing and post development condition is 5.9 and 5.5 kt, respectively.
- The averaged turbulence over a distance of 100 m spanning the peak is below 4 kt.

Runway 11 C

- The peak RMS (standard deviation or turbulence) is above the 4 kt for an approaching wind of 20 kt at 10 m above ground for the current and post development scenarios.
- The localised (instantaneous) turbulence for the existing scenario is 6.25 kt and the averaged turbulence over a distance of 100 m spanning the peak is below 4 kt
- The localised (instantaneous) turbulence for the post development is 6.0 kt and the averaged turbulence over a distance of 100 m spanning the peak is below 4 kt
- The peak turbulence is slightly reduced by 0.25 kt at the most impacted are due to the edition of the proposed development.

Figure 15 Velocity Vector (m/s) at RL 10 m - DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 22.5°

Figure 16 Comparison of the Normal Velocity Component (m/s) – Runway 11 L (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 22.5°)

Figure 17 Comparison of the Normal Velocity Magnitude (m/s) – Runway 11C – (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 22.5°)

5.5 Wind Angle: East Northeast (45°)

Figure 19 shows the wind speeds on 0-14 m/s colour coded scales.

- The CFD model captures the fluid flow characteristics in significant detail. Wind is approaching the site from the northeast at 45° as per the given boundary condition. Wind is then accelerated near the edges and stagnated and recirculated behind the buildings.
- There is a minor variation in wind speeds along the width of the runways.
- The localised wake behind the proposed development is shown in Figure 19B.

5.5.1 Windshear Assessment

A comparison for the wind along the aircraft trajectory for the flight paths in **Figure 8** is shown in **Figure 20** and **Figure 21**. The following conclusions can be reached from the above figures:

• The variation in the mean wind speed for the existing and post development built environment scenarios is either less than 6 kt along all analysed aircraft trajectories at a height below 60 m or the variations occurs below 100 m.

5.5.2 Turbulence Assessment

The turbulence or root-mean-square (RMS) value along the aircraft trajectory for the flight paths in **Figure 8** are shown in **Figure 22**. The following conclusions can be achieved from the above figure:

Runway 11 L

- The localised (instantaneous) turbulence for the existing scenario is 5.15 kt.
- The localised (instantaneous) turbulence for the post development is 5.25 kt.
- The peak turbulence is reduced by 0.1 kt at the most impacted are due to the edition of the proposed development.

Runway 11 C

• The localised (instantaneous) turbulence for the existing and post development scenarios is 5.0 kt.

1.406+01 Variation below 6 Knot or impacted less than 100m 120e+0 100 8.00e+0 6.056 4.000+0 2.009+0 0.00+00 1.2++03 800 1.054+03 318+01 1.15e+03 1000 900 930 18+03 Position (m) - existing-path1-71c - existing-path2-31c A: Current 1404+0 Variation above 6 Knot and impacted less than 100m 120** 1.00 80 6.00 4.00e+0 2.00e+0 0.008+00 120+03 800 1.05e+03 tieres. 115e+03 850 900 950 Te+03 Position [m] - proposed-path1-thc -- proposed-path2-thc **B:** Post Development

Figure 21 Comparison of the Normal Velocity Component (m/s) – Runway 11 C (DDES Turbulence Model, Approaching Wind = 20 Knot, Wind Angle = 45°)

Figure 22 RMS (Standard Deviation) Value in Knot across the Aircraft Trajectory at Runway 11 L– DES Turbulence Model (Approaching Wind = 20 Knot at 10 m above Ground, Wind Angle = 45°)

5.6 Summary Results of Simulations

The trees and vegetation to the north were removed primarily to reduce computational time, noting that this removal makes the model more conservative as the addition of vegetation would typically reduce ground level wind speeds.

The following major conclusions are made from the simulations:

- The disturbance to the approaching mean wind speed for the post development scenario is localised due to the following:
 - Location of the buildings (eg the building is located behind existing buildings.
 - Relatively low buildings height (the highest point is 10.6 m above finished floor level).

5.6.1 Windshear – Approaching Wind Speed = 20 kt at 10m above Ground

- Current Scenario: The variation in the mean wind speed is either below 6 kt or impacted less than 100 m at a height below 60 m.
- Post Development Scenario: The variation in the mean wind is either below 6 kt or impacted less than 100 m at a height below 60 m.
 - The proposed facility will have a localised impact on the existing shears due to location, low height and distance to the runways.

5.6.2 Turbulence - Approaching Wind Speed = 20 kt at 10m above Ground

Results of simulations are detailed in **Section 5** of this study and summarised for critical flightpaths in **Table 7** and **Table 8**:

11L

- <u>Current Scenario</u>: the turbulence criterion of 4 kt across the aircraft trajectory at heights below 60 m (200ft) is triggered at an approaching wind of approximately 13.5 kt (wind angle = 22.5°) for the most critical wind direction.
- <u>Post Development Scenario</u>: the turbulence criterion 4kt across the aircraft trajectory at heights below 60 m (200ft) is triggered at approaching wind of approximately 14.5 kt for the most critical wind direction (wind angle =32.5°).

11C

- <u>Current Scenario</u>: the turbulence criterion of 4 kt across the aircraft trajectory at heights below 60 m (200ft) is triggered at approaching wind of approximately 12.8 kt for the most critical wind direction (wind angle = 33.8°).
- <u>Post Development Scenario design Modification 2</u>: the turbulence criterion of 4 kt across the aircraft trajectory at heights below 60 m (200ft) is triggered at approaching wind of approximately 13.3 kt for the most critical wind direction (wind angle = 33.8°).

The results show a slight reduction in the turbulence level for the most critical wind direction (22.5o). High wind speed from this wind direction is infrequent.

Peak (instantaneous) turbulence levels are increased by a modest amount for the wind 0° and 45° . Refer **Section 6**.

Built Environment Scenario	Wind Angle	Approach Wind for 4 kt Turbulence ¹	No of Hours 4 kt Exceeded ²	No of Hours 4 kt Exceeded ³
	0°	16 kt	2	1.5
Turbulence - Existing	22.5°	13.5 kt	3	2.5
	45°	15.5 kt	2	1.5
	0°	15.2 kt	3	2.5
Turbulence - Proposed	22.5°	14.5 kt	0.5	0.5
	45°	15.2 kt	2	11.5

Table 7 Predicted Turbulence vs Approaching Cross-wind (ALL flight Paths) - Runway 11L

- Note 1: Instantaneous turbulence at the most impacted location. The averaged turbulence for the current and post development scenarios over a distance of 100 m spanning the peak is less than 4 kt for all analysed scenarios.
- Note 2: The number of hours per annum that a 4kt turbulence exceedance occurs is based on the mean wind speeds data recorded during the period 2001-2020 at BoM Station 66137 during the period 1999-2021.
- Note 3: Runway 11L operates during the daytime (6:00s am to 6:00 pm) ONLY. Number of exceeded hours are approximated.
- Table 8Predicted Turbulence vs Approaching Cross-wind (NNE Wind) for the Worst Case
Scenario Runway 11C

Built Environment Scenario	Wind Angle	Approach Wind for 4 kt Turbulence	No of Hours 4 kt Exceeded	
	0°	17.3 kt	0	
Turbulence - Existing	22.5°	12.8 kt	5	
	45°	16.0 kt	0	
	0°	16.6 kt	0	
Turbulence - Proposed	22.5°	13.3 kt	4	
	45°	16.0 kt	0	

Note 1: The number of hours per annum that a 4kt turbulence exceedance occurs is based on the mean wind speeds data recorded during the period 2001-2020 at BoM Station 66137 during the period 1999-2021.

6.0 Mitigation Option for the current and Post Development structures

Section 5 provided guidance as to the areas where the windshear and/or turbulence acceptability criterion had the potential to be exceeded.

- The variation in the mean wind speed for both existing and post development is either below 6 kt or impacted less than 100 m at a height below 60 m. The NASF B windshear criterion is not triggered.
- Highest turbulence levels are obtained upstream the threshold.
- Peak (instantaneous) turbulence levels are increased by a modest amount for the wind 0o and 45o and slightly reduced for infrequent wind at 22.5o.
 - Wind angle 0° Perpendicular Wind
 - 0.7 kt for 11L
 - 0.2 kt for 11C
 - Wind angle 22.5°
 - -0.4 kt for 11L
 - -0.25 kt for 11C
 - Wind angle 45°
 - 0.1 kt for 11L
 - 0 kt for 11C

With regards to the nearest 11L/29R operations, the following comments are made:

- Runway 11L/29R is used for originating take off, full stop landing and "touch and go".
- The actual number of movements on 11R/29L was 116,240 in 2014. 60% of the movements occurred on 29 L and 40% of the movements occurred on 11R.
- Runway 11R/29L is used during daytime only (6:00 am to 6:00 pm).
- Runway 11R/29L and Runway 11L/29R can be operated simultaneously but Runway 11C/29C is only operated singularly.
- Maintenance operation and runways closure for grass cutting are undertaken 8 times per year. The runway may be closed for 4 hours each time. An alternative runway is used during the maintenance operation as per the air traffic control direction.
- Other operational restrictions published in The En-route Supplement Australia (ERSA) are mostly related to noise abatement.

To mitigate building-induced wake turbulence, it's recommended to implement operational risk mitigation measures accepted by the airport operator and CASA when winds exceed 12.8 kt from the NNE (wind angle $22.5^{\circ} \pm 22.5^{\circ}$).

7.0 Conclusions

The current study has involved the modelling of the following built environment "scenarios":

- "Current" the existing built environment (as of September 2022) including recently approved developments. Refer **Figure 5A**
- "Post development Proposed" including Current + Proposed Development. Refer Figure 5B and Figure 6

Existing Wind Conditions

Mean Wind Speed at 10 m Height

- There were 0 hours where the mean wind speed exceeded 20 kt taking into account wind directions 22.5°±22.5° over the 23-year BoM record period.
- There were 8 hours per year where the mean wind speed exceeded 15 kt taking into account wind directions over the 23-year BoM record period.

Runway 11R/29L and Runway 11L/29R operate during daylight only from 06:00 hrs to 18:00 hrs while 11C/29C operates 24 hours a day. The occurrence of the exceedance for 15 kt is reduced to 6-7 hours per year when only daylight hours are included in SLR's assessment (refer **Section 3.2.1**)

Turbulence Exceedance at the Anemometer Location

- There were approximately 1,600 occasions during the 23-year BoM record period (69.5 per year) where natural turbulence exceeded 4-kt taking into account ALL wind directions.
- There were 2. occasions per year where natural turbulence exceeded 4-kt from winds orientating from 22.5°±22.5°.

It should be noted that while many of those exceedance "occasions" occurred on different days, some occurred in consecutive hours on the same day during the passage of major windstorm events.

Future Wind Conditions (Associated with the Post-Post Development Scenario)

The following major conclusions have been reached based on results of CFD simulations for the analysed wind directions:

Windshear – Approaching Wind Speed = 20 Knot at 10m above ground

- A number of warehouses and low-rise buildings are located to the northeast side of the runways.
- The variation in the mean wind speed for the existing and post development scenarios is either below 6 kt or impacted less than 100 m at a height below 60 m. The NASF-B windshear criterion is therefore not exceeded. due to the following:
 - Location of the building (eg the buildings are located behind existing buildings).
 - Relatively low building height (10.6 m)

Wind Turbulence – Approaching Wind Speed = 20 Knot at 10m above ground

- In the CFD modelling, the trees and vegetation surrounding the site were removed primarily to reduce computational time, noting that this removal makes the model slightly conservative as the addition of vegetation would typically reduce ground level wind speeds.
- The proposed development will have a minor impact on the peak turbulence levels taking into account 22.5°±22.5° wind directions.
- Peak (instantaneous) turbulence levels are increased by a modest amount for the wind 0° and 45° and slightly reduced for infrequent wind at 22.5°.
 - Wind angle 0°
 - 0.7 kt for 11L
 - 0.2 kt for 11C
 - Wind angle 22.5°
 - -0.4 kt for 11L
 - -0.25 kt for 11C
 - Wind angle 45°
 - 0.1 kt for 11L
 - 0 kt for 11C

Summary Results

The results of simulations for the worst-case scenario are summarised below.

	Are the Compliane Satis	NASF-B ce Criteria fied?	Runway 11L	Runway 11C	
Scenario	Cross-Wind Turbulence 6 kt 4 kt		No of Hours per Year Turbulence Criterion Exceeded 6 am - 6 pm	No of Hours per Year Turbulence Criterion Exceeded 6 am - 6 pm	
Current	Yes	No	5 ^{1,2}	5 ¹	
Post Development	Yes	No	5 ^{1,2}	4 ¹	

Note 1: The results take into account 22.2±22.5° wind directions.

Note 2: Runway 11L operates during the daytime (6:00 am to 6:00 pm) ONLY. Refer Table 7 and Table 8

Recommendations

To mitigate building-induced wake turbulence, it's recommended to implement operational risk mitigation measures accepted by the airport operator and CASA when winds exceed 12.8 kt from the NNE (wind angle 22.5°± 22.5°).

The addition of the proposed development has a minor impact on the peak turbulence levels, ie it increases the peak turbulence level by \sim 0.7 kt for the worst-case scenario but the number of exceedances for the current and post development scenarios is similar taking into account all analysed wind directions.

8.0 Feedback

At SLR, we are committed to delivering professional quality service to our clients. We are constantly looking for ways to improve the quality of our deliverables and our service to our clients. Client feedback is a valuable tool in helping us prioritise services and resources according to our client needs.

To achieve this, your feedback on the team's performance, deliverables and service are valuable and SLR welcome all feedback via <u>https://www.slrconsulting.com/en/feedback</u>. We recognise the value of your time and we will make a \$10 donation to our 2023 Charity Partner - Lifeline, for every completed form.